Micro-scale metal contacts for capillary force-driven self-assembly

2007 ◽  
Vol 18 (1) ◽  
pp. 015022 ◽  
Author(s):  
Christopher J Morris ◽  
Babak A Parviz
Ionics ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 1611-1618
Author(s):  
Xiaowen Ge ◽  
Xiaomei Du ◽  
Yin Sun ◽  
Junjie Zhang ◽  
Zhongyu Qiu ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2824 ◽  
Author(s):  
Kunpeng Feng ◽  
Jiwen Cui ◽  
Xun Sun ◽  
Hong Dang ◽  
Tangjun Shi ◽  
...  

Three-dimensional micro-scale sensors are in high demand in the fields of metrology, precision manufacturing and industry inspection. To extend the minimum measurable dimension and enhance the accuracy, a tapered four-cores fiber Bragg grating (FBG) probe is proposed. The sensing model is built to investigate the micro-scale sensing characteristics of this method and the design of the tapered stylus is found to influence the accuracy. Therefore, a π/2 phase-shift point is introduced into the FBGs comprised in the probe to suppress spectrum distortion and improve accuracy. Then, the manufacturing method based on capillary self-assembly is proposed to form the probe and the critical length to form a square array for four cylindrical fibers is verified to be effective for the tapered fibers. Experimental results indicate that the design of the tapered stylus can extend the minimum measurable dimension by twofold and has nearly no influence on its sensitivity. The three-dimensional measurement repeatability is better than 31.1 nm and the stability is better than 200 nm within once measuring process. Furthermore, the measurement precision of the three-dimensional micro-scale measurement results is less than 150 nm. It would be widely used in measuring micro-scale features for industry inspection or metrology.


Soft Matter ◽  
2019 ◽  
Vol 15 (19) ◽  
pp. 3854-3863 ◽  
Author(s):  
Jae In Shin ◽  
Su Jung Cho ◽  
Jisoo Jeon ◽  
Kwang Hee Lee ◽  
Jeong Jae Wie

Controlled evaporative self-assembly of P3HT is conducted in a 3-dimensional capillary tube.


2002 ◽  
Vol 739 ◽  
Author(s):  
H. McNally ◽  
S. W. Lee ◽  
D. Guo ◽  
M. Pingle ◽  
D. Bergstrom ◽  
...  

ABSTRACTBio-inspired assembly, through the use of bio-molecules such as DNA and proteins, will play a critical role in the advancement of novel sensing techniques and for the realization of heterogeneous integration of materials. For many of these applications, such as antibody-based biosensor and the study of controlled cell growth, DNA and protein patterning techniques are crucial. We will present an update of our work on protein patterning techniques using microelectronic fabrication, DNA hybridization and biotin-streptavidin pairing. To show its application in biological inspired self-assembly, this technique was used successfully in the self-assembly of 20 nm streptavidin conjugated gold particles. In addition, the integration of nano-and micro-scale heterogeneous materials is very important for novel material synthesis and electro-optic applications. We will present an update on our work to assemble silicon electronic devices using DNA/charged molecules and electric fields. Devices are fabricated, released, charged with molecules, and subsequently manipulated in electric fields. The techniques described can be used to integrate the hybrid devices such as nano- or micro-scale resistors, PN diodes, and MOSFETs on silicon or other substrates such as glass, plastic, etc.


2007 ◽  
Vol 339 ◽  
pp. 234-239 ◽  
Author(s):  
D.P. Zhao ◽  
D. Wu ◽  
K. Chen

This paper introduces a fluidic technique based on patterned shapes of hydrophobic self-assembly monolayers (SAMs) and capillary forces to self-assemble micro-parts onto substrates. Self-assembly is defined as a spontaneous process that occurs in a statistical, non-guided fashion. More specifically, the fluidic self-assembly with capillary force is driven by the gradient in interfacial free energy when a micro-part approaches a substrate binding site. In this paper, the mechanism of self-assembly with capillary forces is proposed. The hydrophobic-hydrophilic material system between the binding sites and micro-parts is then simulated. Finally, the surface energy of a self-assembling system in the liquid phase under different conditions is calculated. The results show that shift, twist, lift and tilts displacements are detected to be rather uncritical and the system turns out to be rather stiff with respect to such displacements. The theoretical result is supported by the experiments and gives quantitive explanations why and how the capillary force works in the self-assembly process.


2014 ◽  
Vol 50 (38) ◽  
pp. 4881-4883 ◽  
Author(s):  
Gloria Modugno ◽  
Zois Syrgiannis ◽  
Aurelio Bonasera ◽  
Mauro Carraro ◽  
Gabriele Giancane ◽  
...  

The host–guest chemistry of the POM-tweezer drives self-assembly with carbon nanostructures in the nano- to micro-scale yielding 0-, 1-, and 2-D nano-hybrids.


2020 ◽  
Vol 30 (15) ◽  
pp. 1909467 ◽  
Author(s):  
Zhaoxin Lao ◽  
Yuanyuan Zheng ◽  
Yichuan Dai ◽  
Yanlei Hu ◽  
Jincheng Ni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document