scholarly journals Jet quenching at finite `t Hooft coupling and chemical potential from AdS/CFT

2006 ◽  
Vol 2006 (09) ◽  
pp. 039-039 ◽  
Author(s):  
Néstor Armesto ◽  
José Daniel Edelstein ◽  
Javier Mas
2006 ◽  
Vol 641 (1) ◽  
pp. 45-49 ◽  
Author(s):  
Feng-Li Lin ◽  
Toshihiro Matsuo

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Shiraz Minwalla ◽  
Amiya Mishra ◽  
Naveen Prabhakar

Abstract We generalize previously obtained results for the (all orders in the ’t Hooft coupling) thermal free energy of bosonic and fermionic large N Chern-Simons theories with fundamental matter, to values of the chemical potential larger than quasiparticle thermal masses. Building on an analysis by Geracie, Goykhman and Son, we present a simple explicit formula for the occupation number for a quasiparticle state of any given energy and charge as a function of the temperature and chemical potential. This formula is a generalization to finite ’t Hooft coupling of the famous occupation number formula of Bose-Einstein statistics, and implies an exclusion principle for Chern-Simons coupled bosons: the total number of bosons occupying any particular state cannot exceed the Chern-Simons level. Specializing our results to zero temperature we construct the phase diagrams of these theories as a function of chemical potential and the UV parameters. At large enough chemical potential, all the bosonic theories we study transit into a compressible Bose condensed phase in which the runaway instability of free Bose condensates is stabilized by the bosonic exclusion principle. This novel Bose condensate is dual to — and reproduces the thermodynamics of — the fermionic Fermi sea.


2014 ◽  
Vol 2014 (3) ◽  
Author(s):  
Elena Caceres ◽  
Arnab Kundu ◽  
Di-Lun Yang

Author(s):  
Aalok Misra ◽  
Charles Gale

Abstract Obtaining a lattice-consistent result for the temperature dependence of the QCD conformal anomaly from a top-down M-theory dual (valid) for all temperatures – both, $$T<T_c$$T<Tc and $$T>T_c$$T>Tc – of thermal QCD at intermediate gauge coupling, has been missing in the literature. We fill this gap by addressing this issue from the M-theory uplift of the SYZ type IIA mirror at intermediate gauge/string coupling [both obtained in Dhuria et al. (JHEP 1311:001, 2013)] of the UV-complete type IIB holographic dual of large-N thermal QCD of Mia et al. (Nucl Phys B 839:187, 2010), and comparing with the very recent lattice results of Bazavov et al. (Phys Rev D 97(1):014510, 2018). Estimates of the $$\mathcal{O}(R^4)$$O(R4) higher derivative corrections in the $$D=11$$D=11 supergravity action relevant to considering the aforementioned M theory uplift in the intermediate ’t Hooft coupling (in addition to gauge coupling) limit, are also presented. We also show that after a tuning of the (small) Ouyang embedding parameter and radius of a blown-up $$S^2$$S2 when expressed in terms of the horizon radius, a QCD deconfinement temperature $$T_c=150$$Tc=150 MeV from a Hawking–Page phase transition at vanishing baryon chemical potential consistent with lattice QCD in the heavy-quark limit, can be obtained.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Qianqian Du ◽  
Michael Strickland ◽  
Ubaid Tantary

Abstract We calculate the resummed perturbative free energy of $$ \mathcal{N} $$ N = 4 supersymmetric Yang-Mills in four spacetime dimensions (SYM4,4) through second order in the ’t Hooft coupling λ at finite temperature and zero chemical potential. Our final result is ultraviolet finite and all infrared divergences generated at three-loop level are canceled by summing over SYM4,4 ring diagrams. Non-analytic terms at $$ \mathcal{O} $$ O (λ3/2) and $$ \mathcal{O} $$ O (λ2 log λ) are generated by dressing the A0 and scalar propagators. The gauge-field Debye mass mD and the scalar thermal mass MD are determined from their corresponding finite-temperature self-energies. Based on this, we obtain the three-loop thermodynamic functions of SYM4,4 to $$ \mathcal{O} $$ O (λ2). We compare our final result with prior results obtained in the weak- and strong-coupling limits and construct a generalized Padé approximant that interpolates between the weak-coupling result and the large-Nc strong-coupling result. Our results suggest that the $$ \mathcal{O} $$ O (λ2) weak-coupling result for the scaled entropy density is a quantitatively reliable approximation to the scaled entropy density for 0 ≤ λ ≲ 2.


2014 ◽  
Vol 29 ◽  
pp. 1460253
Author(s):  
De-Fu Hou ◽  
Zi-Qiang Zhang ◽  
Hai-Cang Ren

This talk presents our derivation of the jet quenching parameter of 𝒩 = 4 super symmetric Yang-Mills theory to the sub-leading term in the large 't Hooft coupling λ at a nonzero temperature by including the world-sheet fluctuations around the classical world sheet from AdS /CFT. The strong coupling expansion corresponds to the semi-classical expansion of the string-sigma model, the gravity dual of the Wilson loop operator, with the sub-leading term expressed in terms of functional determinants of fluctuations. The contribution of these determinants are evaluated numerically. We find the jet quenching parameter is reduced due to world sheet fluctuations by a factor (1 - 1.97λ-1/2). Some insights have been discussed by the comparison between experimental data and our result and other theoretical calculations.


1996 ◽  
Vol 89 (6) ◽  
pp. 1733-1754 ◽  
Author(s):  
FERNANDO ESCOBEDO ◽  
JUAN DE PABLO

Sign in / Sign up

Export Citation Format

Share Document