scholarly journals On the optical measurement of microparticle charge using quantum dots

Author(s):  
Mikhail Pustylnik ◽  
Zahra Marvi ◽  
J Beckers

Abstract We investigated the possibility of using a layer of quantum dots (QDs) deposited on the microparticle surface for the measurement of the charge the microparticle acquires when immersed into a plasma. To that end, we performed the calculations of the Stark shift of the photoluminescence spectrum of QDs caused by the fluctuating local electric field. In our calculations, we assumed the plasma-delivered surplus electrons to be distributed on the surface of a microparticle. According to our calculations, the Stark shift will acquire measurable values when the lifetime of the quasi-stationary configuration of the surplus electrons will be determined by their diffusion along the surface. Experiments with flat QD-covered floating plasma-facing surfaces suggest that measurable Stark shift of the photoluminescence spectrum can be achieved. Based on our model, modern microscopic plasma-surface interaction theories and analysis of the experiments, we suggest the possible design of the charge microsensor, which will allow to measure the charge accumulated on its surface by means of visible-light optics.

Author(s):  
Yun Zhao ◽  
Xiaoqiang Feng ◽  
Menghan Zhao ◽  
Xiaohu Zheng ◽  
Zhiduo Liu ◽  
...  

Employing C3N QD-integrated single-crystal graphene, photodetectors exhibited a distinct photocurrent response at 1550 nm. The photocurrent map revealed that the fast response derive from C3N QDs that enhanced the local electric field near graphene.


2012 ◽  
Vol 62 ◽  
pp. 154-164 ◽  
Author(s):  
Morteza Moghimi Waskasi ◽  
Seyed Majid Hashemianzadeh ◽  
Omolbanin (Setare) Mostajabi Sarhangi ◽  
Asqar Pourhassan Harzandi

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3007
Author(s):  
Dmitry Cherepanov ◽  
Andrei Kostrov ◽  
Fedor Gostev ◽  
Ivan Shelaev ◽  
Mikhail Motyakin ◽  
...  

For the first time, a specific time-delayed peak was registered in the femtosecond transient absorption (TA) spectra of ZnxCd1-xS/ZnS (x~0.5) alloy quantum dots (QDs) doped with Mn2+, which was interpreted as the electrochromic Stark shift of the band-edge exciton. The time-delayed rise and decay kinetics of the Stark peak in the manganese-doped QDs significantly distinguish it from the kinetics of the Stark peak caused by exciton–exciton interaction in the undoped QDs. The Stark shift in the Mn2+-doped QDs developed at a 1 ps time delay in contrast to the instantaneous appearance of the Stark shift in the undoped QDs. Simultaneously with the development of the Stark peak in the Mn2+-doped QDs, stimulated emission corresponding to 4T1-6A1 Mn2+ transition was detected in the subpicosecond time domain. The time-delayed Stark peak in the Mn2+-doped QDs, associated with the development of an electric field in QDs, indicates the appearance of charge transfer intermediates in the process of exciton quenching by manganese ions, leading to the ultrafast Mn2+ excitation. The usually considered mechanism of the nonradiative energy transfer from an exciton to Mn2+ does not imply the development of an electric field in a QD. Femtosecond TA data were analyzed using a combination of empirical and computational methods. A kinetic scheme of charge transfer processes is proposed to explain the excitation of Mn2+. The kinetic scheme includes the reduction of Mn2+ by a 1Se electron and the subsequent oxidation of Mn1+ with a hole, leading to the formation of an excited state of manganese.


2016 ◽  
Vol 136 (10) ◽  
pp. 1420-1421
Author(s):  
Yusuke Tanaka ◽  
Yuji Nagaoka ◽  
Hyeon-Gu Jeon ◽  
Masaharu Fujii ◽  
Haruo Ihori

2021 ◽  
Author(s):  
Xianfeng Zhang ◽  
Zongqun Li ◽  
Shaowen Xu ◽  
Yaowen Ruan

TiO2/CQD composites were synthesized through carbon quantum dots covalently attached to the surface of hollow TiO2 spheres for visible light photocatalytic degradation of organics.


Sign in / Sign up

Export Citation Format

Share Document