carbon quantum dots
Recently Published Documents


TOTAL DOCUMENTS

2184
(FIVE YEARS 1331)

H-INDEX

98
(FIVE YEARS 32)

Chemosensors ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Federico Calì ◽  
Luca Fichera ◽  
Nunzio Tuccitto

The effect of the communication channel size on the transport and subsequent detection of chemical messengers is investigated on millimetric and micrometric channels. The transport of the information carriers, being characterized by an advective and a diffusive contribution, was simulated by varying the flow velocity and the diffusion coefficient. Then, to evaluate the information quality, the Intersymbol Interference (ISI) between two consecutive signals at a specific release delay was estimated. This allowed us to verify that operating under micrometric channel conditions has a larger flow velocity range to obtain completely separated successive signals and smaller release delays can be used between signals. The theoretical results were confirmed by developing a prototype molecular communication platform operating under microfluidic conditions, which enables communication through fluorescent nanoparticles, namely Carbon Quantum Dots (CQDs).


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 466
Author(s):  
Kaixin Chang ◽  
Qianjin Zhu ◽  
Liyan Qi ◽  
Mingwei Guo ◽  
Woming Gao ◽  
...  

Nitrogen-doped carbon quantum dots (N-CQDs) were synthesized in a one-step hydrothermal technique utilizing L-lactic acid as that of the source of carbon and ethylenediamine as that of the source of nitrogen, and were characterized using dynamic light scattering, X-ray photoelectron spectroscopy ultraviolet-visible spectrum, Fourier-transformed infrared spectrum, high-resolution transmission electron microscopy, and fluorescence spectrum. The generated N-CQDs have a spherical structure and overall diameters ranging from 1–4 nm, and their surface comprises specific functional groups such as amino, carboxyl, and hydroxyl, resulting in greater water solubility and fluorescence. The quantum yield of N-CQDs (being 46%) is significantly higher than that of the CQDs synthesized from other biomass in literatures. Its fluorescence intensity is dependent on the excitation wavelength, and N-CQDs release blue light at 365 nm under ultraviolet light. The pH values may impact the protonation of N-CQDs surface functional groups and lead to significant fluorescence quenching of N-CQDs. Therefore, the fluorescence intensity of N-CQDs is the highest at pH 7.0, but it decreases with pH as pH values being either more than or less than pH 7.0. The N-CQDs exhibit high sensitivity to Fe3+ ions, for Fe3+ ions would decrease the fluorescence intensity of N-CQDs by 99.6%, and the influence of Fe3+ ions on N-CQDs fluorescence quenching is slightly affected by other metal ions. Moreover, the fluorescence quenching efficiency of Fe3+ ions displays an obvious linear relationship to Fe3+ concentrations in a wide range of concentrations (up to 200 µM) and with a detection limit of 1.89 µM. Therefore, the generated N-CQDs may be utilized as a robust fluorescence sensor for detecting pH and Fe3+ ions.


Author(s):  
Yingpu Bi ◽  
Bin zhao ◽  
Chenchen Feng ◽  
Xiaojuan Huang ◽  
Yong Ding

Highly efficient hole transfer from photoanodes to oxygen evolution catalysts is crucial for solar photoelectrochemical (PEC) water splitting. Herein, we demonstrated the coupling of NiCo catalysts with carbon quantum dots...


2022 ◽  
pp. 131667
Author(s):  
Duraisamy Elango ◽  
Jeyakumar Saranya Packialakshmi ◽  
Velu Manikandan ◽  
Palaniyappan Jayanthi

Author(s):  
Keerthana P ◽  
Anila Rose Cherian ◽  
Uraiwan Sirimahachai ◽  
Ditto Abraham Thadathil ◽  
Anitha Varghese ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document