scholarly journals Turbulence suppression by energetic particles: A sensitivity-driven dimension-adaptive sparse grid framework for discharge optimization

2021 ◽  
Author(s):  
Ionut Farcas ◽  
Alessandro Di Siena ◽  
Frank Jenko
Solar Physics ◽  
2021 ◽  
Vol 296 (7) ◽  
Author(s):  
E. Lavasa ◽  
G. Giannopoulos ◽  
A. Papaioannou ◽  
A. Anastasiadis ◽  
I. A. Daglis ◽  
...  

2021 ◽  
Vol 28 (8) ◽  
pp. 080701
Author(s):  
M. Idouakass ◽  
Y. Todo ◽  
H. Wang ◽  
J. Wang ◽  
R. Seki ◽  
...  

2021 ◽  
Vol 87 (1) ◽  
Author(s):  
Elena Amato ◽  
Sabrina Casanova

Accelerated particles are ubiquitous in the Cosmos and play a fundamental role in many processes governing the evolution of the Universe at all scales, from the sub-AU scale relevant for the formation and evolution of stars and planets to the Mpc scale involved in Galaxy assembly. We reveal the presence of energetic particles in many classes of astrophysical sources thanks to their production of non-thermal radiation, and we detect them directly at the Earth as cosmic rays. In the last two decades both direct and indirect observations have provided us a wealth of new, high-quality data about cosmic rays and their interactions both in sources and during propagation, in the Galaxy and in the Solar System. Some of the new data have confirmed existing theories about particle acceleration and propagation and their interplay with the environment in which they occur. Some others have brought about interesting surprises, whose interpretation is not straightforward within the standard framework and may require a change of paradigm in terms of our ideas about the origin of cosmic rays of different species or in different energy ranges. In this article, we focus on cosmic rays of galactic origin, namely with energies below a few petaelectronvolts, where a steepening is observed in the spectrum of energetic particles detected at the Earth. We review the recent observational findings and the current status of the theory about the origin and propagation of galactic cosmic rays.


2017 ◽  
Vol 57 (12) ◽  
pp. 126019 ◽  
Author(s):  
J. Varela ◽  
D.A. Spong ◽  
L. Garcia

2021 ◽  
pp. 100094
Author(s):  
Sriramkrishnan Muralikrishnan ◽  
Antoine J. Cerfon ◽  
Matthias Frey ◽  
Lee F. Ricketson ◽  
Andreas Adelmann

Author(s):  
Fabricio S. Silva ◽  
Ricardo A. Medronho ◽  
Luiz Fernando Barca

Oil production facilities have choke/control valves to control production and protect downstream equipment against over pressurization. This process is responsible for droplets break up and the formation of emulsions which are difficult to treat. An experimental study of water in oil dispersion droplets break up in localized pressure drop is presented. To accomplish that, an apparatus simulating a gate valve was constructed. Droplet Size Distribution (DSD) was measured by laser light scattering. Oil physical properties were controlled and three different break up models were compared with the experimental results. All experimental maximum diameters (dmax) were above Kolmogorov length scale. The results show that dmax decreases with increase of energy dissipation rate (ε) according to the relation dmax ∝ ε−0.42. The Hinze (1955, AIChE J.1, 3, 289–295) model failed to predict the experimental results, although, it was able to adjust reasonably well those points when the original proportional constant was changed. It was observed that increasing the dispersed phase concentration increases dmax due to turbulence suppression and/or coalescence phenomenon. Turbulent viscous break up model gave fairly good prediction.


Sign in / Sign up

Export Citation Format

Share Document