Role of E×B drift in double-peak density distribution for the new lower tungsten divertor with unfavorable B
t on EAST
Abstract Doubly peaked density distribution is expected not only to affect the plasma-wetted area at divertor plates, but also to correlate with the upstream density profile and hence characteristics of MHD activities in tokamak plasmas [H. Q. Wang et al., Phys. Rev. Lett. 124, 195002 (2020)]. Clarifying its origination is important to understand the compatibility between power/particle exhausts in divertor and high-performance core plasmas which is required by present-day and future tokamak devices. In this paper, we analyzed the double-peak density profile appeared in the modeling during the physics design phase of the new lower tungsten divertor for EAST by using comprehensive 2D SOLPS-ITER code package including full drifts and currents, with concentrations on unfavorable magnetic field (ion B×∇B drift is directed away from the primary X-point). The results indicate that E×B drift induced by plasma potential gradient near the target, which is closely related to the divertor state, plays essential roles in the formation of double-peak profile at the target: (1) Large enough radial Ep×B drift produces a broadened high-density region; (2) Strong poloidal Er×B drift drives a significant particle sink and creates a valley on the high-density profile. Thus, the simulation results can explain why this kind of doubly peaked density profile is usually observed at the high-recycling divertor regime. In addition, features of the double-peak ion saturation current distribution measured in preliminary experiments testing the new lower tungsten divertor are qualitatively consistent with the simulations.