metal substrate
Recently Published Documents


TOTAL DOCUMENTS

743
(FIVE YEARS 134)

H-INDEX

42
(FIVE YEARS 5)

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 52
Author(s):  
Biao Jiang ◽  
Yizhou Shen ◽  
Jie Tao ◽  
Yangjiangshan Xu ◽  
Haifeng Chen ◽  
...  

Freezing of liquid water occurs in many natural phenomena and affects countless human activities. The freezing process mainly involves ice nucleation and continuous growth, which are determined by the energy and structure fluctuation in supercooled water. Herein, considering the surface hydrophilicity and crystal structure differences between metal and graphene, we proposed a kind of surface configuration design, which was realized by graphene nanosheets being alternately anchored on a metal substrate. Ice nucleation and growth were investigated by molecular dynamics simulations. The surface configuration could induce ice nucleation to occur preferentially on the metal substrate where the surface hydrophilicity was higher than the lateral graphene nanosheet. However, ice nucleation could be delayed to a certain extent under the hindering effect of the interfacial water layer formed by the high surface hydrophilicity of the metal substrate. Furthermore, the graphene nanosheets restricted lateral expansion of the ice nucleus at the clearance, leading to the formation of a curved surface of the ice nucleus as it grew. As a result, ice growth was suppressed effectively due to the Gibbs–Thomson effect, and the growth rate decreased by 71.08% compared to the pure metal surface. Meanwhile, boundary misorientation between ice crystals was an important issue, which also prejudiced the growth of the ice crystal. The present results reveal the microscopic details of ice nucleation and growth inhibition of the special surface configuration and provide guidelines for the rational design of an anti-icing surface.


2022 ◽  
Vol 334 ◽  
pp. 06005
Author(s):  
Paolo Piccardo ◽  
Roberto Spotorno ◽  
Valeria Bongiorno ◽  
Daniele Paravidino ◽  
Christian Geipel ◽  
...  

An SOFC stack operated for 40,000 hours has been dismantled offering the opportunity to characterize the metallic interconnect. The metal plate was carefully investigated to define the evolution of the surfaces exposed to the air and to the hydrogen electrodes respectively. The observations of the surfaces reveal the stability of the layers applied on top of the rib at the air side while in the bottom of the channels the protective coating (i.e., Co-Mn base spinel oxide) shows large crystals. The cross section allowed to highlight the formation of a rather homogeneous layer of thermal grown oxide between the metal and the coating. The average thickness of the TGO is around 11 μm. The hydrogen side shows a superficial alteration (due to the interaction with the water vapour) changing from the inlet to the outlet where it seems thinner as if the TGO further reacted by forming volatile compounds. The cross section observations confirmed the presence of a porous TGO with a rather high content of manganese in a Cr-Mn spinel oxide. Several spots testifies the zones of contact with the Ni base contacting layer. The cross section corresponding to such zones highlighted the Ni diffusion in the metal substrate.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6760
Author(s):  
De-Yi Huang ◽  
Meng-Jiy Wang ◽  
Jih-Jen Wu ◽  
Yu-Chie Chen

Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) and electrospray ionization (ESI)-MS can cover the analysis of analytes from low to high polarities. Thus, an ion source that possesses these two ionization functions is useful. Atmospheric surface-assisted ionization (ASAI), which can be used to ionize polar and nonpolar analytes in vapor, liquid, and solid forms, was demonstrated in this study. The ionization of analytes through APCI or ESI was induced from the surface of a metal substrate such as a titanium slab. ASAI is a contactless approach operated at atmospheric pressure. No electric contacts nor any voltages were required to be applied on the metal substrate during ionization. When placing samples with high vapor pressure in condensed phase underneath a titanium slab close to the inlet of the mass spectrometer, analytes can be readily ionized and detected by the mass spectrometer. Furthermore, a sample droplet (~2 μL) containing high-polarity analytes, including polar organics and biomolecules, was ionized using the titanium slab. One titanium slab is sufficient to induce the ionization of analytes occurring in front of a mass spectrometer applied with a high voltage. Moreover, this ionization method can be used to detect high volatile or polar analytes through APCI-like or ESI-like processes, respectively.


2021 ◽  
Author(s):  
Shuwen Chu ◽  
Huizhen Yuan ◽  
Yuzhang Liang ◽  
Hao He ◽  
Qiang Liu ◽  
...  
Keyword(s):  

2021 ◽  
pp. 2101801
Author(s):  
Mahfujur Rahaman ◽  
Oleksandr Selyshchev ◽  
Yang Pan ◽  
Rico Schwartz ◽  
Ilya Milekhin ◽  
...  

Small ◽  
2021 ◽  
Vol 17 (35) ◽  
pp. 2170179
Author(s):  
Sofia O. Parreiras ◽  
Daniel Moreno ◽  
Borja Cirera ◽  
Miguel A. Valbuena ◽  
José I. Urgel ◽  
...  

Author(s):  
Chang-Chun Lee ◽  
Kuo-Shu Kao ◽  
Chi-Wei Wang ◽  
Tai-Jyun Yu ◽  
Tai-Kuang Lee ◽  
...  

Abstract Given the increasing demand for power density and lightweight specifications, the discrete transistor outline-type package is no longer sufficient for personal vehicle. The new generation of high-power drive needs excellent heat dissipation and miniaturized system simultaneously. However, a traditional architecture of power module, direct bonding copper substrate, has serious warpage deformation and limitation of the heat dissipation. Therefore, a power module with an insulated metal substrate (IMS) is proposed. The proposed power module has a smaller volume, better electrical and thermal performance, and high reliability to be utilized in personal vehicles. A fine-quality assembly process is also presented and verified. Furthermore, two different kinds of molding materials that are widely used in power modules, silicone gel and epoxy, are utilized. The IMS-type module with silicone gel molding fails the temperature cycling test (TCT) with the delamination of the solder layer. The module with epoxy successfully passes the automotive-grade reliability tests, including TCT, highly accelerated stress test, high-temperature reverse bias, and intermittent operational life test according to the standard of AEC-Q101. The finite element analysis for the IMS power module is presented and analyzed under the condition of TCT to estimate the mechanical behavior of the solder layer. The equivalent plastic strain of solder layer with silicone gel and epoxy are 0.76 and 0.08 after TCT, separately. The main reason can be attributed to the coefficient of thermal expansion between the IMS and molding material. According to the analyzed results, the effect of molding material should not be ignored in the power modulus.


2021 ◽  
Vol 8 (16) ◽  
pp. 2170090
Author(s):  
Yilin Su ◽  
Yizhe Zhao ◽  
Shengyuan Jiang ◽  
Xuyan Hou ◽  
Minghui Hong

Author(s):  
Minami Matsumoto ◽  
Ken Kimura ◽  
Natsuko Sugiura

AbstractDuplex stainless steels (DSSs), which consist of ferrite and austenite phases, are widely used owing to their high strength and good corrosion resistance. However, the oxidation behavior of DSSs is extremely complicated because they have dual phases. In this study, changes in the scale and the metal substrate during oxidation were investigated. UNS S32101 (Fe-21.5%Cr–5%Mn–1.5%Ni–0.3%Mo–0.22%N), which is a typical type of DSS, was annealed at 1473 K for up to 36 ks in air. The microstructure of UNS S32101 consisted of austenite/ferrite phases, the ratio of which was 50:50 at room temperature. After oxidation, Cr, Mn-oxide formed predominantly. The metal substrate beneath the scale changed mostly to ferrite. In the same region, depletion of Mn and N concentrations resulted. The decrease in Mn was due to the formation of Cr, Mn-oxide. In addition, it was revealed that N content of the metal substrate decreased due to the formation of N2 gas along with the depletion of Mn. It was assumed that the decrease in Mn and N, which are austenite-stabilized elements, led to an increase in ferrite in the depletion area of Mn and N. From this result, it was expected that the compositional changes in the Mn/N depletion area were caused by the oxidation of steel.


Sign in / Sign up

Export Citation Format

Share Document