scholarly journals Experimental study of premixed methane–air flame coupled with an external acoustic field

2019 ◽  
Vol 1147 ◽  
pp. 012050 ◽  
Author(s):  
K Yu Arefyev ◽  
A I Krikunova ◽  
V A Panov
2015 ◽  
Vol 10 (4) ◽  
pp. 21-28
Author(s):  
Yuriy Litvinenko ◽  
Anton Balbutsky ◽  
Valentin Vikhorev ◽  
Grigory Kozlov ◽  
Maria Litvinenko

Experimental study of subsonic round micro jets in the diffusion combustion of propane and without combustion at low Reynolds numbers was performed. Development of the jet was as under natural conditions without the acoustic excitation and as acoustic excitation of high intensity (90– 100 dB), frequency of acoustic oscillations was from a few Hz to 6 kHz. The jet flow was realized through the nozzle of round cross-section with a bevel of 45° and a diameter d = 0,45 mm. Blown trough the nozzle mixture of propane-butane previously passed through the evaporator, then through flowmeter (two-channel PR4000B) gas consumption. The studies were performed using Schlieren method based on the IAB-451. The pictures of the shadow visualizations was received, the presence of a developing hydrodynamic instability was found, including the presence of convective forces (by burning). The pictures of diffusion combustion of round propane-butane micro-jet at various modes of combustion – lifted and attached flame were received. It was found that the flame in the diffusion combustion of round microjet at an external acoustic field, exposed to flattening and bifurcation as the air free round microjet, while the source of acoustic oscillations is oriented perpendicular to the jet. The pictures of the diffusion combustion for splitting impact jet by acoustic field were obtained. It was found that in this case on the limits plate two temperature maximum were realized.


2002 ◽  
Vol 47 (3) ◽  
pp. 299-305
Author(s):  
A. I. Grigor’ev ◽  
A. P. Gaibov ◽  
S. O. Shiryaeva

2019 ◽  
Vol 880 ◽  
pp. 653-683 ◽  
Author(s):  
Sandip Dighe ◽  
Hrishikesh Gadgil

Atomization of a smooth laminar liquid sheet produced by the oblique impingement of two liquid jets and subjected to transverse acoustic forcing in quiescent ambient is investigated. The acoustic forcing perturbs the liquid sheet perpendicular to its plane, thereby setting up a train of sinuous waves propagating radially outwards from the impingement point. These sheet undulations grow as the wave speed decreases towards the edge of the sheet and the sheet characteristics, like intact length and mean drop size, reduce drastically as compared to the natural breakup. Our observations show that the effect of the acoustic field is perceptible over a continuous range of forcing frequencies. Beyond a certain forcing frequency, called the cutoff frequency, the effect of the external acoustic field ceases. The cutoff frequency is found to be an increasing function of the Weber number. Our measurements of the characteristics of spatially amplifying sinuous waves show that the instabilities responsible for the natural sheet breakup augment in the presence of external forcing. Combining the experimental observations and measurements, we conclude that the linear theory of aerodynamic interaction (Squire’s theory) (Squire, Brit. J. Appl. Phys., vol. 4 (6), 1953, pp. 167–169) predicts the important features of this phenomenon reasonably well.


1986 ◽  
Vol 51 (3) ◽  
pp. 1107-1111
Author(s):  
V. V. Azharonok ◽  
N. F. Aleshin ◽  
V. A. Gubkevich ◽  
G. P. Lizunkov ◽  
N. I. Chubrik ◽  
...  

Author(s):  
Б.П. Шарфарец ◽  
Ф.Ф. Легуша

Рассматривается возможность акустоэлектрического преобразования с использованием явления потенциала течения, обратного к другому электрокинетическому явлению - электроосмосу. Обратимость двух этих явлений позволяет использовать один преобразователь, содержащий заполненную жидкостью мембрану, к торцам которой подведены электроды, либо в режиме излучателя, либо в режиме приемника акустической энергии. В первом случае к электродам подается электрическое поле, во втором случае преобразователь находится в стороннем акустическом поле, а с электродов снимается напряжение, отвечающее стороннему акустическому полю. Работа состоит из двух частей. В настоящей части рассматриваются электрохимические аспекты, а именно получается дифференциальное уравнение, связывающее градиенты потенциала течения и акустического давления в теле преобразователя. Из этого уравнения следует выражение для объемной силы в двойном электрическом слое на границе раздела фаз в пористой структуре. Сила вызывается вектором электрической напряженности, возникающей вследствие образования в пористой структуре потенциала течения. Вывод зависимости потенциала течения от перепада давления приводится с помощью аппарата неравновесной термодинамики. Согласно этому подходу электроосмос и потенциал течения описываются уравнениями термодинамики неравновесных процессов, кинетические коэффициенты которых удовлетворяют соотношениям Онзагера, а вся система является линейной, в том числе и относительно перепада давления и потенциала течения. Полученное выражение для объемной силы в жидких порах мембраны позволит в следующей части статьи изучить акустические аспекты процесса акустоэлектрического преобразования на основе использования явления потенциала течения. Предлагаемый подход к созданию приемной антенны на явлении потенциала течения является новым по причине того, что для увеличения эффективности акустоэлектрического преобразования предполагается применение постоянного напряжения накачки на электродах преобразователя. Результаты работы могут быть использованы при теоретической разработке и практическом конструировании обратимых электроакустических преобразователей нового типа, построенных на использовании электрокинетических явлений. The possibility of acoustoelectric conversion using the phenomenon of the potential of the flow, the inverse of another electrokinetic phenomenon - electroosmosis. The reversibility of these two phenomena makes it possible to use a single transducer containing a liquid-filled membrane, to the ends of which electrodes are connected, either in the emitter mode or in the receiver mode of acoustic energy. In the first case, an electric field is supplied to the electrodes, in the second case, the transducer is located in an external acoustic field, and the voltage corresponding to the external acoustic field is removed from the electrodes. The work consists of two parts. In this part, electrochemical aspects are considered, namely, a differential equation is obtained that relates the gradients of the flow potential and acoustic pressure in the transducer body. From this equation follows the expression for the volumetric force in a double electric layer at the phase boundary in a porous structure. The force is caused by the vector of electric tension arising from the formation of the flow potential in the porous structure. The derivation of the dependence of the flow potential on the pressure drop is given using the apparatus of nonequilibrium thermodynamics. According to this approach, electroosmosis and the flow potential are described by the equations of thermodynamics of nonequilibrium processes. The kinetic coefficients of this system satisfy the Onsager relations, and the entire system is linear, including with respect to the pressure drop and flow potential. The obtained expression for the volumetric force in the liquid pores of the membrane will allow us to study the acoustic aspects of the acoustoelectric conversion process based on the use of the phenomenon of flow potential in the next part of the article. The proposed approach to creating a receiving antenna on the phenomenon of flow potential is new due to the fact that in order to increase the efficiency of acoustoelectric conversion, it is proposed to use a constant pump voltage at the electrodes The results of the work can be used in the theoretical development and practical construction of a new type of reversible electroacoustic transducers based on the use of electrokinetic phenomena.


1975 ◽  
Vol 9 (2) ◽  
pp. 250-257 ◽  
Author(s):  
M. G. Lebedev ◽  
G. F. Telenin

2001 ◽  
Vol 44 (1) ◽  
pp. 79-89 ◽  
Author(s):  
Guo-Zhen ZHU ◽  
Xi-Fu ZHU ◽  
Hong-Zhi GUO

Sign in / Sign up

Export Citation Format

Share Document