scholarly journals Research on pose point cloud matching error compensation method for confocal image assembly

2019 ◽  
Vol 1303 ◽  
pp. 012073
Author(s):  
Yijin Zhao ◽  
Xin Ye ◽  
Lei Wang ◽  
Xinhai Yu ◽  
Heng Zhang
Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 294
Author(s):  
Bo Shi ◽  
Fan Zhang ◽  
Fanlin Yang ◽  
Yanquan Lyu ◽  
Shun Zhang ◽  
...  

Global navigation satellite system (GNSS)/inertial navigation system (INS) navigation technology is one of the core technologies in a mobile measurement system and can provide real-time geo-referenced information. However, in the environment measurements, buildings cover up the GNSS signal, causing satellite signals to experience loss-of-lock. At this time errors of INS independent navigation accumulate rapidly, so it cannot meet the needs of the mobile measurement system. In this paper, a positioning error compensation method based on plane control is proposed by analyzing the error characteristics of position and orientation caused by satellite signal loss-of-lock in the urban environment. This method control uses planar features and the laser point cloud positioning equation to establish an adjustment model that ignores the influence of the attitude error and finds the positioning error at the middle point of the GNSS signal loss-of-lock time period, and then compensates for the error at other points by using the characteristics of the positioning error. The experimental results show that the accuracy of the compensated laser point cloud has been significantly improved, and the feasibility of the method is verified. Meanwhile, the method can rely on the existing building plane so the method is adaptable and easy to implement.


2021 ◽  
Vol 11 (3) ◽  
pp. 913
Author(s):  
Chang Yuan ◽  
Shusheng Bi ◽  
Jun Cheng ◽  
Dongsheng Yang ◽  
Wei Wang

For a rotating 2D lidar, the inaccurate matching between the 2D lidar and the motor is an important error resource of the 3D point cloud, where the error is shown both in shape and attitude. Existing methods need to measure the angle position of the motor shaft in real time to synchronize the 2D lidar data and the motor shaft angle. However, the sensor used for measurement is usually expensive, which can increase the cost. Therefore, we propose a low-cost method to calibrate the matching error between the 2D lidar and the motor, without using an angular sensor. First, the sequence between the motor and the 2D lidar is optimized to eliminate the shape error of the 3D point cloud. Next, we eliminate the attitude error with uncertainty of the 3D point cloud by installing a triangular plate on the prototype. Finally, the Levenberg–Marquardt method is used to calibrate the installation error of the triangular plate. Experiments verified that the accuracy of our method can meet the requirements of the 3D mapping of indoor autonomous mobile robots. While we use a 2D lidar Hokuyo UST-10LX with an accuracy of ±40 mm in our prototype, we can limit the mapping error within ±50 mm when the distance is no more than 2.2996 m for a 1 s scan (mode 1), and we can limit the mapping error within ±50 mm at the measuring range 10 m for a 16 s scan (mode 7). Our method can reduce the cost while the accuracy is ensured, which can make a rotating 2D lidar cheaper.


2012 ◽  
Vol 482-484 ◽  
pp. 2192-2196
Author(s):  
Yuan Tian ◽  
Zi Ma ◽  
Peng Li

For improving precision of 3D surface measurement equipments, which are playing important role in reverse engineering, the Adaptive Network based Fuzzy Inference System (ANFIS) is developed to reconstruct 3D surface error, and the measurement error of point cloud is compensated by the presented 3D error ANFIS model. The precision of 3D surface measurement equipments has been improved noticeably


Optik ◽  
2019 ◽  
Vol 178 ◽  
pp. 830-840
Author(s):  
Shuai Wang ◽  
Maosheng Xiang ◽  
Bingnan Wang ◽  
Fubo Zhang ◽  
Yirong Wu

Author(s):  
Xicong Zou ◽  
Xuesen Zhao ◽  
Guo Li ◽  
Zengqiang Li ◽  
Zhenjiang Hu ◽  
...  

On-machine error compensation (OMEC) is efficient at improving machining accuracy without increasing extra manufacturing cost, and involves the on-machine measurement (OMM) of machining accuracy and modification of program code based on the measurement results. As an excellent OMM technique, chromatic confocal sensing allows for the rapid development of accurate and reliable error compensation technique. The present study integrated a non-contact chromatic confocal probe into an ultra-precision machine for OMM and OMEC of machined components. First, the configuration and effectiveness of the OMM system were briefly described, and the relevant OMEC method was presented. With the OMM result, error compensation software was then developed to automatically generate a modified program code for error compensation. Finally, a series of cutting experiments were performed to verify the validity of the proposed OMEC method. The experimental results demonstrate that the proposed error compensation method is reliable and considerably improves the form error of machined components.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 748
Author(s):  
Qi Liu ◽  
Hong Lu ◽  
Xinbao Zhang ◽  
Yu Qiao ◽  
Qian Cheng ◽  
...  

The drive at the center of gravity (DCG) principle has been adopted in computer numerical control (CNC) machines and industrial robots that require heavy-duty and quick feeds. Using this principle requires accurate corrections of positioning errors. Conventional error compensation methods may cause vibrations and unstable control performances due to the delay between compensation and motor motion. This paper proposes a new method to reduce the positioning errors of the dual-driving gantry-type machine tool (DDGTMT), namely, a typical DCG-principle-based machine tool. An error prediction method is proposed to characterize errors online. An algorithm is proposed to quickly and accurately compensate the errors of the DDGTMT. Experiment results verify that the non-delay error compensation method proposed in this paper can effectively improve the accuracy of the DDGTMT.


Sign in / Sign up

Export Citation Format

Share Document