scholarly journals Population dynamics in the face of climate change: Analysis of a cubic thermal performance curve in ectotherms

2019 ◽  
Vol 1329 ◽  
pp. 012007
Author(s):  
V Saldaña-Núñez ◽  
F Córdova-Lepe ◽  
F N Moreno-Gómez
2019 ◽  
Author(s):  
Dimitrios - Georgios Kontopoulos ◽  
Thomas P. Smith ◽  
Timothy G. Barraclough ◽  
Samraat Pawar

AbstractDeveloping a thorough understanding of how ectotherm physiology adapts to different thermal environments is of crucial importance, especially in the face of global climate change. A key aspect of an organism’s thermal performance curve—the relationship between fitness-related trait performance and temperature—is its thermal sensitivity, i.e., the rate at which trait values increase with temperature within its typically-experienced thermal range. For a given trait, the distribution of thermal sensitivities across species, often quantified as “activation energy” values, is typically right-skewed. Currently, the mechanisms that generate this distribution are unclear, with considerable debate about the role of thermodynamic constraints vs adaptive evolution. Here, using a phylogenetic comparative approach, we study the evolution of the thermal sensitivity of population growth rate across phytoplankton (Cyanobacteria and eukaryotic microalgae) and prokaryotes (bacteria and archaea), two microbial groups that play a major role in the global carbon cycle. We find that thermal sensitivity across these groups is moderately phylogenetically heritable, and that its distribution is shaped by repeated evolutionary convergence throughout its parameter space. More precisely, we detect bursts of adaptive evolution in thermal sensitivity, increasing the amount of overlap among its distributions in different clades. We obtain qualitatively similar results from evolutionary analyses of the thermal sensitivities of two physiological rates underlying growth rate: net photosynthesis and respiration of plants. Furthermore, we find that these episodes of evolutionary convergence are consistent with two opposing forces: decrease in thermal sensitivity due to environmental fluctuations and increase due to adaptation to stable environments. Overall, our results indicate that adaptation can lead to large and relatively rapid shifts in thermal sensitivity, especially in microbes where rapid evolution can occur at short time scales. Thus, more attention needs to be paid to elucidating the implications of rapid evolution in organismal thermal sensitivity for ecosystem functioning.Author summaryChanges in environmental temperature influence the performance of biological traits (e.g., respiration rate) in ectotherms, with the relationship between trait performance and temperature (the “thermal performance curve”) being single-peaked. Understanding how thermal performance curves adapt to different environments is important for predicting how organisms will be impacted by climate change. One key aspect of the shape of these curves is the thermal sensitivity near temperatures typically experienced by the species. Whether and how thermal sensitivity responds to different environments is a topic of active debate. To shed light on this, here we perform an evolutionary analysis of the thermal sensitivity of three key traits of prokaryotes, phytoplankton, and plants. We show that thermal sensitivity does not evolve in a gradual manner, but can differ considerably even between closely related species. This suggests that thermal sensitivity undergoes rapid adaptive evolution, which is further supported by our finding that thermal sensitivity varies weakly with latitude. We conclude that variation in thermal sensitivity arises partly from adaptation to environmental factors and that this may need to be accounted for in ecophysiological models.


2018 ◽  
Author(s):  
Dimitrios - Georgios Kontopoulos ◽  
Erik van Sebille ◽  
Michael Lange ◽  
Gabriel Yvon-Durocher ◽  
Timothy G. Barraclough ◽  
...  

AbstractTo better predict how populations and communities respond to climatic temperature variation, it is necessary to understand how the shape of the response of fitness-related traits to temperature evolves (the thermal performance curve). Currently, there is disagreement about the extent to which the evolution of thermal performance curves is constrained. One school of thought has argued for the prevalence of thermodynamic constraints through enzyme kinetics, whereas another argues that adaptation can—at least partly—overcome such constraints. To shed further light on this debate, we perform a phylogenetic meta-analysis of the thermal performance curves of growth rate of phytoplankton—a globally important functional group—, controlling for environmental effects (habitat type and thermal regime). We find that thermodynamic constraints have a minor influence on the shape of the curve. In particular, we detect a very weak increase of maximum performance with the temperature at which the curve peaks, suggesting a weak “hotter-is-better” constraint. Also, instead of a constant thermal sensitivity of growth across species, as might be expected from strong constraints, we find that all aspects of the thermal performance curve evolve along the phylogeny. Our results suggest that phytoplankton thermal performance curves adapt to thermal environments largely in the absence of hard thermodynamic constraints.


2005 ◽  
Vol 42 ◽  
pp. 331-336 ◽  
Author(s):  
Fuyuki Saito ◽  
Ayako Abe-Ouchi

AbstractThe response of the Greenland ice sheet to global warming is simulated by two different numerical approaches, in order to evaluate the sensitivity of the analysis to the numerical structure employed. It is found that the thickness near the margin differs appreciably in these two simulations under identical conditions of modest warming, primarily due to a significant increase in the warming effect by an elevation–ablation feedback mechanism in one of the simulations. The change in ice-sheet volume differs by as much as a factor of two under strong climate-change forcing, demonstrating the need for care in interpreting the results of such climate-change analysis.


PLoS ONE ◽  
2009 ◽  
Vol 4 (12) ◽  
pp. e8320 ◽  
Author(s):  
Evan H. Girvetz ◽  
Chris Zganjar ◽  
George T. Raber ◽  
Edwin P. Maurer ◽  
Peter Kareiva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document