scholarly journals Generalized Gamma – Generalized Gompertz Distribution

2020 ◽  
Vol 1591 ◽  
pp. 012043
Author(s):  
M A A Boshi ◽  
S H Abid ◽  
N H Al-Noor
Author(s):  
Ayush Tripathi ◽  
Umesh Singh ◽  
Sanjay Kumar Singh

2021 ◽  
Vol 17 (4) ◽  
pp. 215-220
Author(s):  
Ting Zhang ◽  
Ping Wang ◽  
Tao Liu ◽  
Cheng Jia ◽  
Wei-na Pang ◽  
...  

2021 ◽  
Author(s):  
Nadia Hashim Al-Noor ◽  
Noor Kareem Assi

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1850
Author(s):  
Rashad A. R. Bantan ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy

Unit distributions are commonly used in probability and statistics to describe useful quantities with values between 0 and 1, such as proportions, probabilities, and percentages. Some unit distributions are defined in a natural analytical manner, and the others are derived through the transformation of an existing distribution defined in a greater domain. In this article, we introduce the unit gamma/Gompertz distribution, founded on the inverse-exponential scheme and the gamma/Gompertz distribution. The gamma/Gompertz distribution is known to be a very flexible three-parameter lifetime distribution, and we aim to transpose this flexibility to the unit interval. First, we check this aspect with the analytical behavior of the primary functions. It is shown that the probability density function can be increasing, decreasing, “increasing-decreasing” and “decreasing-increasing”, with pliant asymmetric properties. On the other hand, the hazard rate function has monotonically increasing, decreasing, or constant shapes. We complete the theoretical part with some propositions on stochastic ordering, moments, quantiles, and the reliability coefficient. Practically, to estimate the model parameters from unit data, the maximum likelihood method is used. We present some simulation results to evaluate this method. Two applications using real data sets, one on trade shares and the other on flood levels, demonstrate the importance of the new model when compared to other unit models.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1571
Author(s):  
Irina Shevtsova ◽  
Mikhail Tselishchev

We investigate the proximity in terms of zeta-structured metrics of generalized negative binomial random sums to generalized gamma distribution with the corresponding parameters, extending thus the zeta-structured estimates of the rate of convergence in the Rényi theorem. In particular, we derive upper bounds for the Kantorovich and the Kolmogorov metrics in the law of large numbers for negative binomial random sums of i.i.d. random variables with nonzero first moments and finite second moments. Our method is based on the representation of the generalized negative binomial distribution with the shape and exponent power parameters no greater than one as a mixed geometric law and the infinite divisibility of the negative binomial distribution.


Stochastics ◽  
2021 ◽  
pp. 1-18
Author(s):  
Ji Hwan Cha ◽  
Sophie Mercier

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Johnson A. Adewara ◽  
Kayode S. Adekeye ◽  
Olubisi L. Aako

In this paper, two methods of control chart were proposed to monitor the process based on the two-parameter Gompertz distribution. The proposed methods are the Gompertz Shewhart approach and Gompertz skewness correction method. A simulation study was conducted to compare the performance of the proposed chart with that of the skewness correction approach for various sample sizes. Furthermore, real-life data on thickness of paint on refrigerators which are nonnormal data that have attributes of a Gompertz distribution were used to illustrate the proposed control chart. The coverage probability (CP), control limit interval (CLI), and average run length (ARL) were used to measure the performance of the two methods. It was found that the Gompertz exact method where the control limits are calculated through the percentiles of the underline distribution has the highest coverage probability, while the Gompertz Shewhart approach and Gompertz skewness correction method have the least CLI and ARL. Hence, the two-parameter Gompertz-based methods would detect out-of-control faster for Gompertz-based X¯ charts.


Sign in / Sign up

Export Citation Format

Share Document