scholarly journals On Performance of Two-Parameter Gompertz-Based X¯ Control Charts

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Johnson A. Adewara ◽  
Kayode S. Adekeye ◽  
Olubisi L. Aako

In this paper, two methods of control chart were proposed to monitor the process based on the two-parameter Gompertz distribution. The proposed methods are the Gompertz Shewhart approach and Gompertz skewness correction method. A simulation study was conducted to compare the performance of the proposed chart with that of the skewness correction approach for various sample sizes. Furthermore, real-life data on thickness of paint on refrigerators which are nonnormal data that have attributes of a Gompertz distribution were used to illustrate the proposed control chart. The coverage probability (CP), control limit interval (CLI), and average run length (ARL) were used to measure the performance of the two methods. It was found that the Gompertz exact method where the control limits are calculated through the percentiles of the underline distribution has the highest coverage probability, while the Gompertz Shewhart approach and Gompertz skewness correction method have the least CLI and ARL. Hence, the two-parameter Gompertz-based methods would detect out-of-control faster for Gompertz-based X¯ charts.

2020 ◽  
Vol 1 (1) ◽  
pp. 9-16
Author(s):  
O. L. Aako ◽  
J. A. Adewara ◽  
K. S Adekeye ◽  
E. B. Nkemnole

The fundamental assumption of variable control charts is that the data are normally distributed and spread randomly about the mean. Process data are not always normally distributed, hence there is need to set up appropriate control charts that gives accurate control limits to monitor processes that are skewed. In this study Shewhart-type control charts for monitoring positively skewed data that are assumed to be from Marshall-Olkin Inverse Loglogistic Distribution (MOILLD) was developed. Average Run Length (ARL) and Control Limits Interval (CLI) were adopted to assess the stability and performance of the MOILLD control chart. The results obtained were compared with Classical Shewhart (CS) and Skewness Correction (SC) control charts using the ARL and CLI. It was discovered that the control charts based on MOILLD performed better and are more stable compare to CS and SC control charts. It is therefore recommended that for positively skewed data, a Marshall-Olkin Inverse Loglogistic Distribution based control chart will be more appropriate.


2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Darmanto Darmanto

<p><em>The manufacturing production process that is currently trend is short-run. Short-run process is a job shop and a just in-time. These causes the process parameters to be unknown due to unavailability of data and generally a small amount of product. The control chart is one of the control charts which  designed for the short run. The procedure of the control chart follows the concept of succesive difference and under the assumption of the multivariate Normal distribution. The sensitivity level of a control chart is evaluated based on the average run length (ARL) value. In this study, the ARL value was calculated based on the shift simulation of the average vector by recording the first m-point out of the control limits. The average vector shift simulation of the target () is performed simultaneously with the properties of a positive shift (=+ δ). Variations of data size and many variables in this study were m = 20, 50 and p = 2, 4, 8, respectively. Each scheme (a combination of δ, m and p) is iterated 250,000 times. The simulation results show that for all schemes when both parameters are known ARL<sub>0 </sub>≈ 370. But, when parameters are unknown, ARL<sub>1</sub> turn to smaller. This conclusion also implied when the number of p and n are increased, it reduce the sensitivity of the control chart.</em></p>


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Muhammad Aslam ◽  
G. Srinivasa Rao ◽  
Muhammad Saleem ◽  
Rehan Ahmad Khan Sherwani ◽  
Chi-Hyuck Jun

More recently in statistical quality control studies, researchers are paying more attention to quality characteristics having nonnormal distributions. In the present article, a generalized multiple dependent state (GMDS) sampling control chart is proposed based on the transformation of gamma quality characteristics into a normal distribution. The parameters for the proposed control charts are obtained using in-control average run length (ARL) at specified shape parametric values for different specified average run lengths. The out-of-control ARL of the proposed gamma control chart using GMDS sampling is explored using simulation for various shift size changes in scale parameters to study the performance of the control chart. The proposed gamma control chart performs better than the existing multiple dependent state sampling (MDS) based on gamma distribution and traditional Shewhart control charts in terms of average run lengths. A case study with real-life data from ICU intake to death caused by COVID-19 has been incorporated for the realistic handling of the proposed control chart design.


Information ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 312 ◽  
Author(s):  
Muhammad Zahir Khan ◽  
Muhammad Farid Khan ◽  
Muhammad Aslam ◽  
Seyed Taghi Akhavan Niaki ◽  
Abdur Razzaque Mughal

Conventional control charts are one of the most important techniques in statistical process control which are used to assess the performance of processes to see whether they are in- or out-of-control. As traditional control charts deal with crisp data, they are not suitable to study unclear, vague, and fuzzy data. In many real-world applications, however, the data to be used in a control charting method are not crisp since they are approximated due to environmental uncertainties and systematic ambiguities involved in the systems under investigation. In these situations, fuzzy numbers and linguistic variables are used to grab such uncertainties. That is why the use of a fuzzy control chart, in which fuzzy data are used, is justified. As an exponentially weighted moving average (EWMA) scheme is usually used to detect small shifts, in this paper a fuzzy EWMA (F-EWMA) control chart is proposed to detect small shifts in the process mean when fuzzy data are available. The application of the newly developed fuzzy control chart is illustrated using real-life data.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Muhammad Aslam ◽  
Ambreen Shafqat ◽  
G. Srinivasa Rao ◽  
Jean-Claude Malela-Majika ◽  
Sandile C. Shongwe

This paper proposes a new control chart for the Birnbaum–Saunders distribution based on multiple dependent state repetitive sampling (MDSRS). The proposed control chart is a generalization of the control charts based on single sampling, repetitive sampling, and multiple dependent state sampling. Its sensitivity is evaluated in terms of the average run length (ARL) using both exact formulae and simulations. A comprehensive comparison between the Birnbaum–Saunders distribution control chart based on the MDSRS method and other existing competing methods is provided using a simulation study as well as a real-life illustration. The results reveal that the proposed chart outperforms the existing charts considered in this study by having better shift detection ability.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Said Farooq Shah ◽  
Zawar Hussain ◽  
Muhammad Riaz ◽  
Salman Arif Cheema

Data privacy is a serious issue and therefore needs our attention. In this study, we propose masking through randomized response techniques (RRTs) to ensure the privacy and thus to avoid falsification. We assume that the process characteristic is of sensitive nature, and due to privacy issue, the actual measurements cannot be shared with the monitoring team. In such situations, the producer is very likely to falsify the measurements. Consequently, the usual control charting techniques will mislead about the process status. We discuss different data masking strategies to be used with Shewhart-type control charts. The usual Shewhart-type control chart appears to be a subchart of the proposed charts. Average run length (ARL) is used as a performance measure of the study proposals. We have evaluated the performance of the proposed charts for different shift sizes and under different intensities of masking. We have also carried out a comparative analysis for various models under varying sensitivity parameters. We have also compared the performance of the proposals with the traditional Shewhart chart. It is observed that the B-L control chart under the RRT model performs better for smaller shifts and for larger shift sizes, the G-B chart under an unrelated question model tperforms better. A real-life application of the study proposal is also considered where monitoring of thickness of paint on refrigerators is of interest.


Author(s):  
Muhammad Anwar Mughal ◽  
Muhammad Azam ◽  
Muhammad Aslam

Repetitive sampling has been found very popular in improving the control chart techniques for last couple of years. In repetitive sampling based control charts, there are two additional control limits inside the usual upper control limit (UCL) and lower control limit (LCL). If any subgroup crosses these limits but remain inside outer limits, it is deferred and replaced with another selection. Process is said to be out of control if any subgroup falls outside UCL/LCL. In this article, the technique has been modified by introducing a relation between outer and inner control limits in terms of a ratio and need of this modification has also been justified by highlighting a gap in the existing technique. By using Monte Carlo simulation, several results have been generated relevant to different sample sizes and introduced ratios. The results have been described with the help of average run length (ARL) tables that how the efficiency of control chart is effected by using different ratios. The modification in the technique also provides variety of alternatives within the scope of repetitive based control charts. All the discussed options have summarized to one table to see that how the control limits under this technique behave and impact on detecting shifts in the process average. The schemes have been interpreted in the light of above ratio and their comparison has been described under different sample sizes that facilitate the user to select most appropriate scheme for a desired process control. An example has been included by choosing one of the proposed schemes to show the application and performance of the proposed control chart in a manufacturing process. 


2018 ◽  
Vol 6 ◽  
pp. 1050-1055
Author(s):  
Izabela D. Czabak-Górska ◽  
Marcin Lorenc

The purpose of the article is to determine the Type I error and Average Run Length values for charts   and R, for which control limits have been determined based on the Skewness Correction method (SC method), with an unknown probability distribution of the qualitative feature being tested. The study also used the Monte Carlo Simulation, in which two sampling methods were used to obtain random input scenarios - matching theoretical distributions (selected skewed distributions) and bootstrap resampling based on a manufacturing company’s measurement data. The presented article is a continuation of Czabak-Górska's (2016) research. The purpose of the article was to determine Type I error value and ARL type A for chart   and R, for which the control limits were determined based on the skewness correction method. For this purpose, measurement data from a company producing car seat frames. Presented case study showed that the chart determined using the skewness correction method works better for the data described by the gamma or log-normal distribution. This, in turn, may suggest that appropriate distribution was selected for the presented data, thanks to which it is possible to determine the course and nature of the process, which is important from the point of view of its further analysis, e.g. in terms of the process capability.


Author(s):  
Dushyant Tyagi ◽  
Vipin Yadav

Statistical Process Control (SPC) is an efficient methodology for monitoring, managing, analysing and recuperating process performance. Implementation of SPC in industries results in biggest benefits, as enhanced quality products and reduced process variation. While dealing with the theory of control chart we generally move with the assumption of independent process observation. But in practice usually, for most of the processes the observations are autocorrelated which degrades the ability of control chart application. The loss caused by autocorrelation can be obliterated by making modifications in the traditional control charts. The article presented here refers to a combination of EWMA and CUSUM charting techniques supplementing modifications in the control limits. The performance of the referred scheme is measured by comparing average run length (ARL) with existing control charts. Also, the referred scheme is found reasonably well for detecting particularly smaller displacements in the process.


Production ◽  
2011 ◽  
Vol 21 (2) ◽  
pp. 217-222 ◽  
Author(s):  
Yang Su-Fen ◽  
Tsai Wen-Chi ◽  
Huang Tzee-Ming ◽  
Yang Chi-Chin ◽  
Cheng Smiley

In practice, sometimes the process data did not come from a known population distribution. So the commonly used Shewhart variables control charts are not suitable since their performance could not be properly evaluated. In this paper, we propose a new EWMA Control Chart based on a simple statistic to monitor the small mean shifts in the process with non-normal or unknown distributions. The sampling properties of the new monitoring statistic are explored and the average run lengths of the proposed chart are examined. Furthermore, an Arcsine EWMA Chart is proposed since the average run lengths of the Arcsine EWMA Chart are more reasonable than those of the new EWMA Chart. The Arcsine EWMA Chart is recommended if we are concerned with the proper values of the average run length.


Sign in / Sign up

Export Citation Format

Share Document