scholarly journals Electron-energy-loss spectroscopy and cathodoluminescence for particles inside substrate

2021 ◽  
Vol 2015 (1) ◽  
pp. 012064
Author(s):  
Alexander A Kichigin ◽  
Maxim A Yurkin

Abstract To simulate the interaction of a nanoparticle with an electron beam, we previously developed a theoretical description for the general case of a particle fully embedded in an infinite arbitrary host medium. The theory is based on the volume-integral variant of frequency-domain Maxwell’s equations and, therefore, is naturally applicable in the discrete-dipole approximation. The fully-embedded approximation allows fast numerical simulations of the experiments for particles inside a substrate since the host medium discretization is not needed. In this work, we study how applicable the fully-embedded approach is for realistic scenarios with relatively thin substrates. In particular, we performed test simulations for a silver sphere both inside an infinite host medium and inside a finite box or sphere. For the host medium, we considered two non-absorbing cases (the denser one causes Cherenkov radiation), as well as an absorbing case. The peak positions in the obtained spectra approximately agree between substrates a few times thicker than the sphere and the infinite one. However, a much thicker substrate (of the order of μm) would be required to have a qualitative agreement for absolute peak amplitudes. The developed algorithm is implemented in the open-source code ADDA, allowing one to rigorously and efficiently simulate electron-energy-loss spectroscopy and cathodoluminescence by particles of arbitrary shape and internal structure embedded into any homogeneous host medium.

The technique of electron energy loss spectroscopy has provided us with a large body of data on the vibrational normal modes of atoms and molecules adsorbed on crystal surfaces, and of atoms within the outermost surface layers of crystals. In this paper, we review the theoretical description of the inelastic scattering events studied by the method, with emphasis on a series of recent calculations directed at a quantitative description of scattering events in which the electron emerges far from the specular direction or that of a Bragg beam , as a consequence of exciting a vibrational mode of short wavelength.


Author(s):  
P. Trebbia ◽  
P. Ballongue ◽  
C. Colliex

An effective use of electron energy loss spectroscopy for chemical characterization of selected areas in the electron microscope can only be achieved with the development of quantitative measurements capabilities.The experimental assembly, which is sketched in Fig.l, has therefore been carried out. It comprises four main elements.The analytical transmission electron microscope is a conventional microscope fitted with a Castaing and Henry dispersive unit (magnetic prism and electrostatic mirror). Recent modifications include the improvement of the vacuum in the specimen chamber (below 10-6 torr) and the adaptation of a new electrostatic mirror.The detection system, similar to the one described by Hermann et al (1), is located in a separate chamber below the fluorescent screen which visualizes the energy loss spectrum. Variable apertures select the electrons, which have lost an energy AE within an energy window smaller than 1 eV, in front of a surface barrier solid state detector RTC BPY 52 100 S.Q. The saw tooth signal delivered by a charge sensitive preamplifier (decay time of 5.10-5 S) is amplified, shaped into a gaussian profile through an active filter and counted by a single channel analyser.


Author(s):  
C. Colliex ◽  
P. Trebbia

The physical foundations for the use of electron energy loss spectroscopy towards analytical purposes, seem now rather well established and have been extensively discussed through recent publications. In this brief review we intend only to mention most recent developments in this field, which became available to our knowledge. We derive also some lines of discussion to define more clearly the limits of this analytical technique in materials science problems.The spectral information carried in both low ( 0<ΔE<100eV ) and high ( >100eV ) energy regions of the loss spectrum, is capable to provide quantitative results. Spectrometers have therefore been designed to work with all kinds of electron microscopes and to cover large energy ranges for the detection of inelastically scattered electrons (for instance the L-edge of molybdenum at 2500eV has been measured by van Zuylen with primary electrons of 80 kV). It is rather easy to fix a post-specimen magnetic optics on a STEM, but Crewe has recently underlined that great care should be devoted to optimize the collecting power and the energy resolution of the whole system.


Author(s):  
R. F. Egerton

An important parameter governing the sensitivity and accuracy of elemental analysis by electron energy-loss spectroscopy (EELS) or by X-ray emission spectroscopy is the signal/noise ratio of the characteristic signal.


Author(s):  
R.D. Leapman ◽  
C.R. Swyt

The intensity of a characteristic electron energy loss spectroscopy (EELS) image does not, in general, directly reflect the elemental concentration. In fact, the raw core loss image can give a misleading impression of the elemental distribution. This is because the measured core edge signal depends on the amount of plural scattering which can vary significantly from region to region in a sample. Here, we show how the method for quantifying spectra due to Egerton et al. can be extended to maps.


Author(s):  
David C. Joy ◽  
Suichu Luo ◽  
John R. Dunlap ◽  
Dick Williams ◽  
Siqi Cao

In Physics, Chemistry, Materials Science, Biology and Medicine, it is very important to have accurate information about the stopping power of various media for electrons, that is the average energy loss per unit pathlength due to inelastic Coulomb collisions with atomic electrons of the specimen along their trajectories. Techniques such as photoemission spectroscopy, Auger electron spectroscopy, and electron energy loss spectroscopy have been used in the measurements of electron-solid interaction. In this paper we present a comprehensive technique which combines experimental and theoretical work to determine the electron stopping power for various materials by electron energy loss spectroscopy (EELS ). As an example, we measured stopping power for Si, C, and their compound SiC. The method, results and discussion are described briefly as below.The stopping power calculation is based on the modified Bethe formula at low energy:where Neff and Ieff are the effective values of the mean ionization potential, and the number of electrons participating in the process respectively. Neff and Ieff can be obtained from the sum rule relations as we discussed before3 using the energy loss function Im(−1/ε).


Author(s):  
N. D. Browning ◽  
M. M. McGibbon ◽  
M. F. Chisholm ◽  
S. J. Pennycook

The recent development of the Z-contrast imaging technique for the VG HB501 UX dedicated STEM, has added a high-resolution imaging facility to a microscope used mainly for microanalysis. This imaging technique not only provides a high-resolution reference image, but as it can be performed simultaneously with electron energy loss spectroscopy (EELS), can be used to position the electron probe at the atomic scale. The spatial resolution of both the image and the energy loss spectrum can be identical, and in principle limited only by the 2.2 Å probe size of the microscope. There now exists, therefore, the possibility to perform chemical analysis of materials on the scale of single atomic columns or planes.In order to achieve atomic resolution energy loss spectroscopy, the range over which a fast electron can cause a particular excitation event, must be less than the interatomic spacing. This range is described classically by the impact parameter, b, which ranges from ~10 Å for the low loss region of the spectrum to <1Å for the core losses.


Author(s):  
Zhifeng Shao ◽  
Ruoya Ho ◽  
Andrew P. Somlyo

Electron energy loss spectroscopy (EELS) has been a powerful tool for high resolution studies of elemental distribution, as well as electronic structure, in thin samples. Its foundation for biological research has been laid out nearly two decades ago, and in the subsequent years it has been subjected to rigorous, but by no means extensive research. In particular, some problems unique to EELS of biological samples, have not been fully resolved. In this article we present a brief summary of recent methodological developments, related to biological applications of EELS, in our laboratory. The main purpose of this work was to maximize the signal to noise ratio (S/N) for trace elemental analysis at a minimum dose, in order to reduce the electron dose and/or time required for the acquisition of high resolution elemental maps of radiation sensitive biological materials.Based on the simple assumption of Poisson distribution of independently scattered electrons, it had been generally assumed that the optimum specimen thickness, at which the S/N is a maximum, must be the total inelastic mean free path of the beam electron in the sample.


Author(s):  
Nestor J. Zaluzec

The application of electron energy loss spectroscopy (EELS) to light element analysis is rapidly becoming an important aspect of the microcharacterization of solids in materials science, however relatively stringent requirements exist on the specimen thickness under which one can obtain EELS data due to the adverse effects of multiple inelastic scattering.1,2 This study was initiated to determine the limitations on quantitative analysis of EELS data due to specimen thickness.


Sign in / Sign up

Export Citation Format

Share Document