scholarly journals A Study on the Detection Method of Dark Matter using Gravitational Waves

2021 ◽  
Vol 2083 (2) ◽  
pp. 022044
Author(s):  
Zheng Li ◽  
Chenyu Yang ◽  
Xinen Zhou

Abstract Dark matter is a type of invisible matter that analytically exists in the universe. Nowadays, scholars have yet detected it and confirmed its presence experimentally. Einstein predicted gravitational waves based on his general theory of relativity. In 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) first detected the gravitational wave. This paper reviews the background of dark matter and gravitational waves and introduces the method of detecting dark matter with gravitational waves. Moreover, the feasibility of the scenario has been verified based on information retrieval and theoretical analysis. These results shed light on the future detection schemes of dark matter detection.

Author(s):  
Roman Szostek ◽  
Paweł Góralski ◽  
Kamil Szostek

The most important conclusion from this article is that from the General Theory of Relativity (GTR) do not result any gravitational waves, but just ordinary modulation of the gravitational field intensities caused by rotating of bodies. If the LIGO team has measured anything, it is only this modulation, rather than the gravitational wave understood as the carrier of gravity. This discussion shows that using too complicated mathematics in physics leads to erroneous interpretation of results (in this case, perhaps the tensor analysis is guilty). Formally, various things can be calculated, but without knowing what such analysis means, they can be attributed misinterpreted. Since the modulation of gravitational field intensities has been called a gravitational wave in contemporary physics, we have also done so, although it is misleading. In the article it was shown, that from the Newton’s law of gravitation resulted an existence of gravitational waves very similar to these, which result from the General Theory of Relativity. The article shows differences between the course of gravitational waves that result from Newton’s gravitation, and the course of gravitational waves that result from the General Theory of Relativity, which measurement was announced by the LIGO (Laser Interferometer Gravitational-Wave Observatory) [1], [2], and [5]. According to both theories, gravitational waves are cyclical changes of the gravitational field intensities. The article proposes a method of testing a laser interferometer for gravitational wave measurement used in the LIGO Observatory. Criticism of results published by the LIGO team was also presented.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022049
Author(s):  
Zhongyi Lin ◽  
Ziheng Xiong ◽  
Bowen Yang

Abstract It is still unable to determine the categories of particle that composes the dark matter due to the shortage of detection methods. In this paper, we used the methods of separation of variables, analogy, and dimensional analysis to investigate dark matter detection. The three different models, including the WIMP, axions, and MACHOs, are considered first, which described the properties of dark matter as well. Subsequently, the three currents methods of detecting dark matter, and shortage of those methods are discussed. According to the drawbacks, we have related Gravitational Waves and Cosmic Rays to detecting dark matter, which may contribute to the further detection of dark matter. The milestones achieved these years have also been briefly described, followed by some up-gradations of detectors and further research schemes. These new methods proposed in theory will be upgraded and implemented soon. These results shed light for future dark matter detection.


2017 ◽  
Vol 4 (5) ◽  
pp. 687-706 ◽  
Author(s):  
Rong-Gen Cai ◽  
Zhoujian Cao ◽  
Zong-Kuan Guo ◽  
Shao-Jiang Wang ◽  
Tao Yang

Abstract The direct detection of gravitational wave by Laser Interferometer Gravitational-Wave Observatory indicates the coming of the era of gravitational-wave astronomy and gravitational-wave cosmology. It is expected that more and more gravitational-wave events will be detected by currently existing and planned gravitational-wave detectors. The gravitational waves open a new window to explore the Universe and various mysteries will be disclosed through the gravitational-wave detection, combined with other cosmological probes. The gravitational-wave physics is not only related to gravitation theory, but also is closely tied to fundamental physics, cosmology and astrophysics. In this review article, three kinds of sources of gravitational waves and relevant physics will be discussed, namely gravitational waves produced during the inflation and preheating phases of the Universe, the gravitational waves produced during the first-order phase transition as the Universe cools down and the gravitational waves from the three phases: inspiral, merger and ringdown of a compact binary system, respectively. We will also discuss the gravitational waves as a standard siren to explore the evolution of the Universe.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022046
Author(s):  
Zihan Liu ◽  
Hao Shen ◽  
Zeyu Xiao

Abstract Contemporarily, a gravitational wave is one of the most important approaches to gather information from the enormous universe. In short, a gravitational wave is a wave that carries energy, and it is created by the acceleration of massive celestial body propagation with a speed of light. This paper discusses the recent progress of gravitational wave detection in China and clarifies our own opinion on future development. Specifically, a basic description is first presented about the definition and basic knowledge for gravitational wave models and detection methods. Subsequently, this section contains the plan and achievement of the Chinese gravitational wave observatory. Finally, the usages and applications of the gravitational wave to help to detect more phenomena in the universe are demonstrated. These results shed light on a clearer picture of gravitational waves, which may offer a better understanding of the background, principle of detection, and the uses of gravitational waves, i.e., emphasizes its importance in modern astrophysics scientific researches.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Bhanu Pratap Singh

The purpose of this article is not to present a popular history of mathematical physics nor even to display for the general reader some of the result of research in the history of science, Rather the intention is to explore one important aspect of the great scientific revaluation of recent times which proves the existence of Gravitational wave, predicted by Dr. Albert Einstein about a hundred years ago in his general theory of relativity. Gravitational waves are ripples in the fabric of space time caused by some of the most violent and energetic processes in the universe. They are produced by catastrophic events such as colliding Black hole as well as the collapse of stellar super nova.


Physics ◽  
2019 ◽  
Vol 1 (1) ◽  
pp. 67-75
Author(s):  
Revaz Beradze ◽  
Merab Gogberashvili

In this paper we consider the properties of the 10 confirmed by the LIGO (Laser Interferometer Gravitational-Wave Observatory) Collaboration gravitational wave signals from the black hole mergers. We want to explain non-observation of electromagnetic counterpart and higher then expected merging rates of these events, assuming the existence of their sources in the hidden mirror universe. Mirror matter, which interacts with our world only through gravity, is a candidate of dark matter and its density can exceed ordinary matter density five times. Since mirror world is considered to be colder, star formation there started earlier and mirror black holes had more time to pick up the mass and to create more binary systems within the LIGO reachable zone. In total, we estimate factor of 15 amplification of black holes merging rate in mirror world with respect to our world, which is consistent with the LIGO observations.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 497
Author(s):  
N. V. Krishnendu ◽  
Frank Ohme

The detections of gravitational-wave (GW) signals from compact binary coalescence by ground-based detectors have opened up the era of GW astronomy. These observations provide opportunities to test Einstein’s general theory of relativity at the strong-field regime. Here we give a brief overview of the various GW-based tests of General Relativity (GR) performed by the LIGO-Virgo collaboration on the detected GW events to date. After providing details for the tests performed in four categories, we discuss the prospects for each test in the context of future GW detectors. The four categories of tests include the consistency tests, parametrized tests for GW generation and propagation, tests for the merger remnant properties, and GW polarization tests.


2019 ◽  
Author(s):  
Vitaly Kuyukov

Modern general theory of relativity considers gravity as the curvature of space-time. The theory is based on the principle of equivalence. All bodies fall with the same acceleration in the gravitational field, which is equivalent to locally accelerated reference systems. In this article, we will affirm the concept of gravity as the curvature of the relative wave function of the Universe. That is, a change in the phase of the universal wave function of the Universe near a massive body leads to a change in all other wave functions of bodies. The main task is to find the form of the relative wave function of the Universe, as well as a new equation of gravity for connecting the curvature of the wave function and the density of matter.


2015 ◽  
Vol 04 (01) ◽  
pp. 28-30
Author(s):  
Yuan-Hann Chang

It is known that the majority (about 80%) of the matter in the universe is not visible, but rather a hypothetical "Dark Matter". The existence of Dark Matter has been postulated to explain the discrepancies between the estimated mass of visible matters in the galaxies, and their gravitational effects. Although it has been postulated for over 70 years, and has been commonly accepted by most scientists, the essence of the Dark Matter has not yet been understood. In particular, we still do not know what constitutes the Dark Matter. Direct detection of the Dark Matter is therefore one of the most important issues in physics.


Author(s):  
Kun Chen ◽  
Xiaofeng Zhang ◽  
Tong Guo ◽  
Zhi-Ming Cai ◽  

The observation of gravitational wave enables human to explore the origin, formation and evolution of universe governed by the gravitational interaction and the nature of gravity beyond general theory of relativity. The groundbreaking discovery of Gravitational Wave by Laser Interferometer Gravitational-Wave Observatory provides a brand-new observation way. While detecting gravitational wave on ground is limited by noises and test scale, space detection is an optimized alternative to learn rich sources in range of 0.1 mHz–1 Hz. Considering the great significance of space gravitational wave detection, ESA proposed LISA project, CAS also proposed Taiji project. Due to the extremely weak gravitational wave signal and high measurement accuracy requirement, the spaceborne GW observation antenna is accomplished by three spacecrafts constitute isosceles triangle formation intersatellite interferometer. The arm length of the interferometer reaches millions of kilometers between them, and the measurement accuracy reaches pico-meter magnitude. There are many key technologies including pm magnitude space laser interferometer metrology, drag-free control using TM of Gravity Reference Sensor, [Formula: see text]N micro thruster, ultra-clean & ultra-stable spacecraft, etc. This paper focuses on key technologies of the ultra-clean & ultra-stable spacecraft, analyzing the design of mechanical, thermal control and magnetic clean. Moreover, it reports the preliminary results of the technological breakthrough.


Sign in / Sign up

Export Citation Format

Share Document