Electromechanical Transient Modeling and LVRT Parameter Identification of Large Capacity Full Power Converter Wind Turbines Based on PSASP Program
Abstract Full power converter wind turbine is the main type of wind power, so the simulation calculation needs to establish accurate model parameters. This paper analyzes the model structure of PSASP program according to its low voltage ride through control and physical characteristics, and puts forward the parameter identification method of LVRT characteristics of full power converter wind turbine, and to use the LVRT data of 5. 5MW unit for parameter identification and simulation verification. This paper proposes that the electromechanical transient simulation can ignore the part of the generator model of the full power converter wind turbine, and simulates the grid side converter with the controlled current source. The main characteristics of LVRT are determined by the control system of the converter. In order to do the parameter identification, it is necessary to calculate and analyze the control characteristics of multiple measured data. First, determine the control mode, then determine the control parameters to complete the parameter identification. In this paper, the modeling conditions and model structure of the full power converter wind turbine are confirmed. The correlation between the parameters during the LVRT fault and the parameters during the LVRT recovery period and the LVRT characteristics is analyzed. In this paper, a parameter identification method is proposed to analyze the active current and reactive current during the LVRT fault, which has strong physical significance and operability. Based on the actual LVRT characteristics of 5. 5MW wind turbine, the parameter identification and simulation are carried out to verify the correctness of the method.