scholarly journals Analysis of surface acoustic wave properties in CaYAl3O7 single crystal

2021 ◽  
Vol 2131 (5) ◽  
pp. 052099
Author(s):  
R M Taziev

Abstract The success on the growth of new piezoelectric materials allows sufficiently increase the operating temperature of the surface acoustic wave (SAW) devices from 300°C to 1000°C. A new calcium yttrium aluminate (CaYAl3O7) single crystal of the tetragonal symmetry has piezoelectric properties up to the temperature of 1000°C. The paper presents a numerical study of the surface acoustic wave properties in the crystal. The SAW velocity, electromechanical coupling coefficient and power flow angle are studied for different crystal cuts of CaYAl3O7. It is shown that the maximum value of SAW coupling coefficient (0.24%) is on the Z+60°-cut and wave propagation direction along the X-axis of the crystal. For the Z-cut and wave propagation direction along the X+45°-axis of crystal, the SAW coupling coefficient is equal to 0.2%. These two cuts of the crystal are potentially useful for SAW device applications.

2021 ◽  
Vol 2131 (5) ◽  
pp. 052098
Author(s):  
R M Taziev

Abstract In this study, the surface acoustic wave (SAW) temperature properties in flux-grown α-GeO2 crystal are numerically investigated. It is shown that the SAW velocity temperature change substantially depends only on the temperature coefficient of three elastic constants: C66, C44 and C14 for crystal cuts and wave propagation directions, where SAW has high electromechanical coupling coefficient. The SAW temperature coefficient of delay (TCD) for these crystal cuts are in the range from -40 ppm /°C to -70 ppm /°C. In contrast to alpha-quartz, the surface wave TCD values are not equal to zero in Z-, Y- , and Z- rotated cuts of α-GeO2 single crystal. Its values are comparable in the magnitude with the surface wave TCD values in lithium tantalate. In the crystal grown from the melt, the interdigital transducer (IDT) conductance has two times larger amplitude than that in hydrothermally grown a-GeO2. The leaky acoustic wave excited by IDT on Z+120°-cut and wave propagation direction along the X-axis, has an electromechanical coupling coefficient 5 times less than that for surface wave.


2009 ◽  
Vol 95 (24) ◽  
pp. 242906 ◽  
Author(s):  
Xiuming Li ◽  
Rui Zhang ◽  
Naixing Huang ◽  
Tianquan Lü ◽  
Wenwu Cao

2017 ◽  
Vol 183 (1) ◽  
pp. 36-42
Author(s):  
Xiuming Li ◽  
Quan Xu ◽  
Guangtao Wu ◽  
Baozhi Cheng ◽  
Yonghao Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document