scholarly journals Composition of the gas-plasma phase in the radioactive graphite - water vapor system

2022 ◽  
Vol 2150 (1) ◽  
pp. 012026
Author(s):  
N M Barbin ◽  
A M Kobelev ◽  
D I Terent’ev ◽  
S A Titov

Abstract In this work, the composition and thermophysical properties of the “Reactor graphite-H2O” system at temperatures from 2123 to 3223 K are calculated. It was found that the main components of the vapor phase at a temperature of 2123-2923 K: carbon dioxide, carbon monoxide, water vapor, hydroxide, hydrogen, atomic hydrogen. At temperatures above 3223 K, oxygen and atomic oxygen are added to the gases present. The balances of uranium and plutonium are considered. Uranium at temperatures above 2123 K is present in the system in the form of gaseous and ionized uranium dioxide and trioxide. Plutonium at temperatures above 2123 K is present in the system in the form of gaseous and ionized plutonium oxide, gaseous plutonium dioxide. The calculation of thermophysical properties for the considered system is carried out.

1971 ◽  
Vol 40 ◽  
pp. 253-256 ◽  
Author(s):  
C. A. Barth ◽  
W. G. Fastie ◽  
C. W. Hord ◽  
J. B. Pearce ◽  
K. K. Kelly ◽  
...  

Emission features from ionized carbon dioxide and carbon monoxide were measured in the 1900- to 4300-Å spectral region. The Lyman-α 1216-Å line of atomic hydrogen and the 1304-, 1356-, and 2972-Å lines of atomic oxygen were observed.


2013 ◽  
Vol 543 ◽  
pp. 30-34 ◽  
Author(s):  
Aljona Ramonova ◽  
Tengiz Butkhuzi ◽  
Viktorija Abaeva ◽  
I.V. Tvauri ◽  
Soslan Khubezhov ◽  
...  

Laser-induced fragmentation and desorption of fragments of PTCDA films vacuum-deposited on GaAs (100) substrate has been studied by time-of-flight (TOF) mass spectroscopy. The main effect caused by pulsed laser light irradiation (pulse duration: 10 ns, photon energy: 2.34 eV and laser fluence ranging from 0.5 to 7 mJ/cm2) is PTCDA molecular fragmentation and desorption of the fragments formed, whereas no desorption of intact PTCDA molecule was detected. Fragments formed are perylene core C20H8, its half C10H4, carbon dioxide, carbon monoxide and atomic oxygen. All desorbing fragments have essentially different kinetic energy. The mechanism of photoinduced molecular fragmentation and desorption is discussed.


2021 ◽  
Vol 310 ◽  
pp. 108631
Author(s):  
Pradeep Wagle ◽  
Prasanna H. Gowda ◽  
Brian K. Northup ◽  
James P.S. Neel ◽  
Patrick J. Starks ◽  
...  

1959 ◽  
Vol 12 (2) ◽  
pp. 114 ◽  
Author(s):  
JD Blackwood ◽  
FK McTaggart

Atomic oxygen, produced by dissociation of molecular oxygen in a radio frequency field, will react with amorphous or graphitic carbon at room temperatures and both carbon monoxide and carbon dioxide appear in the product gases. Carbon monoxide appears to be the primary product of oxidation of carbon, the carbon dioxide being produced by direct combination of carbon monoxide with oxygen which takes place mainly at the carbon surface. Atomic oxygen will also react with carbon dioxide to produce carbon monoxide and molecular oxygen but the quantity of carbon monoxide produced by this reaction is small compared to that produced by direct oxidation of the carbon.


Sign in / Sign up

Export Citation Format

Share Document