scholarly journals Route measurements of natural surface radiation background in the Almaty region

2022 ◽  
Vol 2155 (1) ◽  
pp. 012027
Author(s):  
M T Bigeldiyeva ◽  
V V Dyachkov ◽  
V I Zherebchevsky ◽  
Yu A Zaripova ◽  
A V Yushkov

Abstract Measurements of the spatial distribution of radon isotopes were carried out from April 2021 to August 2021 in the foothills of the Trans-Ili Alatau of the Tien Shan in the Almaty region at various heights above sea level: from 500 to 2500 meters. They were carried out using electronic radiometric equipment: beta-dosimeter “RKS-01B-SOLO”; gamma dosimeter “RKS-01G-SOLO”; radiometer of radon and its daughter decay products “RAMON- 02” in the field. As a result, preliminary assessment schemes were built for route measurements of the 222Rn radon isotope, beta and gamma radiation fields from natural daughter products of decay of radon isotopes and radionuclides located in the surface atmospheric layer.

2021 ◽  
Vol 3 (72) ◽  
pp. 21-26
Author(s):  
B. Kantsyrev

When constructing numerical models of the atmosphere and the surface atmospheric layer (PAS) interacting with it, the “parametrization” approach is used, that is, the representation of processes with scales smaller than the scale of the cells of the computational grid intended for modeling processes of larger scales.


2004 ◽  
Vol 5 (6) ◽  
pp. 1091-1101 ◽  
Author(s):  
Dirk Meetschen ◽  
Bart J. J. M. van den Hurk ◽  
Felix Ament ◽  
Matthias Drusch

Abstract High-quality fields of surface radiation fluxes are required for the development of Land Data Assimilation Systems. A fast offline integration scheme was developed to modify NWP model cloud fields based on Meteosat visible and infrared observations. From the updated cloud fields, downward shortwave and longwave radiation at the surface are computed using the NWP radiative transfer model. A dataset of 15 months covering Europe was produced and validated against measurements of ground stations on a daily basis. In situ measurements are available for 30 stations in the Netherlands and two Baseline Surface Radiation Network (BSRN) stations in Germany and France. The accuracy of shortwave surface radiation is increased when the integration system is applied. The rms error in the model forecast is found to be 32 and 42 W m−2 for the period from October 1999 to December 2000 for the two BSRN stations. These values are reduced to 21 and 25 W m−2 through the application of the integration scheme. During the summer months the errors are generally larger than in winter. Because of an integrated monitoring of surface albedo, the performance of the scheme is not affected by snow cover. The errors in the longwave radiation field of the original NWP model are already small. However, they are slightly reduced by applying the integration scheme.


1991 ◽  
Vol 10 (1) ◽  
pp. 1-10
Author(s):  
S. V. Anisimov ◽  
E. A. Mareev ◽  
V. Yu Trakhtengerts

Sign in / Sign up

Export Citation Format

Share Document