scholarly journals Detection of delay in post-monsoon agricultural burning across Punjab, India: potential drivers and consequences for air quality

Author(s):  
Tianjia Liu ◽  
Loretta J Mickley ◽  
Ritesh Gautam ◽  
Manoj Kumar Singh ◽  
Ruth S DeFries ◽  
...  
2019 ◽  
Author(s):  
Tianjia Liu ◽  
Loretta Mickley ◽  
Ritesh Gautam ◽  
Manoj Singh ◽  
Ruth DeFries ◽  
...  

2018 ◽  
Vol 18 (7) ◽  
pp. 1756-1773 ◽  
Author(s):  
Hiren Jethva ◽  
Duli Chand ◽  
Omar Torres ◽  
Pawan Gupta ◽  
Alexei Lyapustin ◽  
...  

2020 ◽  
Author(s):  
Vidit Parkar ◽  
Savita Datta ◽  
Haseeb Hakkim ◽  
Ashish Kumar ◽  
Muhammed Shabin ◽  
...  

<p>Tropospheric ozone is a major pollutant and it is harmful for humans at sustained exposures of 40 ppb or more in ambient air. In this study we calibrate the deposition of ozone for stomatal exchange (DO<sub>3</sub>SE) model for <em>Polyalthia longifolia</em> (False Ashoka), a tree that accounts for 5-20% of the urban plantations in Indian cities and subsequently use the model to estimate not only the stomatal O<sub>3</sub> uptake by this tree but also its capability to sequester other criteria air pollutants. We discuss the impact of planting this tree on ozone precursors NOx and VOCs in a roadside plantation scenario for mitigating air pollution.</p><p>Stomatal conductance of <em>Polyalthia longifolia</em> was measured, using a SC-1 Leaf Porometer, at IISER Mohali-Punjab in the NW-IGP (Northwest Indo-Gangetic Plane) which has a sub-tropical dry climate. Stomatal conductance was measured during all the four (Summer, Monsoon, Post-Monsoon, Winter) seasons, while BVOC emission fluxes were quantified using a dynamic plant cuvette during post monsoon, winter and summer season. We use ambient mixing ratios of ozone, NO, NO<sub>2</sub>, SO<sub>2</sub> and O<sub>3 </sub>in combination with the meteorological parameters such as temperature, RH, soil moisture and photosynthetically active radiation (PAR) from the IISER Mohali Atmospheric chemistry facility to quantify <em>Polyalthia longifolia</em> roadside plantations’ impact on urban air quality through stomatal uptake of air pollutants (primarily NO, NO<sub>2</sub> and O<sub>3</sub>) and BVOC emissions. <em>Polyalthia longifolia</em> displays a number of very interesting characteristics that include being a low isoprene and monoterpene emitter, having an extremely high leaf area index thanks to its height, straight shape and dense canopy. It displays extreme resistance to drought and high vapour pressure deficits in summer allowing stomatal uptake of pollutants and evaporative cooling to continue even under unfavourable meteorological conditions.</p>


Atmosphere ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 449 ◽  
Author(s):  
Agapol Junpen ◽  
Jirataya Pansuk ◽  
Orachorn Kamnoet ◽  
Penwadee Cheewaphongphan ◽  
Savitri Garivait

Crop residue burning negatively impacts both the environment and human health, whether in the aspect of air pollution, regional and global climate change, or transboundary air pollution. Accordingly, this study aims to assess the level of air pollutant emissions caused by the rice residue open burning activities in 2018, by analyzing the remote sensing information and country specific data. This research also aims to analyze the trend of particulate matter 10 microns or less in diameter (PM10) concentration air quality sites in provinces with large paddy rice planting areas from 2010–2017. According to the results, 61.87 megaton (Mt) of rice residue were generated, comprising 21.35 Mt generated from the irrigated fields and 40.53 Mt generated from the rain-fed field. Only 23.0% of the total rice residue generated were subject to open burning—of which nearly 32% were actually burned in the fields. The emissions from such rice residue burning consisted of: 5.34 ± 2.33 megaton (Mt) of CO2, 44 ± 14 kiloton (kt) of CH4, 422 ± 179 kt of CO, 2 ± 2 kt of NOX, 2 ± 2 kt of SO2, 38 ± 22 kt of PM2.5, 43 ± 29 kt of PM10, 2 ± 1 kt of black carbon (BC), and 14 ± 5 kt of organic carbon (OC). According to the air quality trends, the results shows the higher level of PM10 concentration was due to the agricultural burning activities, as reflected in the higher monthly averages of the months with the agricultural burning, by around 1.9–2.1 times. The result also shows the effect of government’s policy for farmers on the crop burning activities and air quality trends.


2020 ◽  
Author(s):  
Ernesto Reyes-Villegas ◽  
Upasana Panda ◽  
Eoghan Darbyshire ◽  
James M. Cash ◽  
Rutambhara Joshi ◽  
...  

Abstract. Air pollution in urban environments has been shown to have a negative impact on air quality and human health, particularly in megacities. Over recent decades, Delhi, India has suffered high atmospheric pollution, with significant particulate matter (PM) concentrations as result of anthropogenic activities. Organic aerosols (OA) are composed of thousands of different chemical species and are one of the main constituents of submicron particles. However, quantitative knowledge of OA composition, their sources and processes in urban environments is still limited. This is important particularly in India, as Delhi is a massive, inhomogeneous conurbation, which we would expect that the apportionment and concentrations will vary depending on where in Delhi the measurements/source apportionment is performed, indicating the need of multi-site measurements. This study presents the first multisite analysis carried out in India over different seasons, with a focus on identifying OA sources. The measurements were taken during 2018 at two sites in Delhi, India. One site was located at the India Meteorological Department, New Delhi (ND). The other site was located at the Indira Gandhi Delhi Technical University for Women, Old Delhi (OD). Non-refractory submicron aerosol (NR-PM1) concentrations (ammonium, nitrate, sulphate, chloride and organic aerosols) of four aerosol mass spectrometers were analysed. Collocated measurements of VOC, black carbon, NOx and CO were performed. Positive matrix factorization (PMF) analysis was performed to separate the organic fraction, identifying a number of conventional factors: hydrocarbon-like OA (HOA) related to traffic emissions, biomass burning OA (BBOA), cooking OA (COA) and secondary OA (SOA). A composition-based estimate of PM1 is defined by combining BC and NR-PM1 (C-PM1 = BC + NR-PM1). No significant difference was observed on C-PM1 concentrations between sites; OD (142 ± 117 µg m−3) compared to ND (123 ± 71 µg m−3), from post-monsoon measurements. A wider variability was observed between seasons, where pre-monsoon and monsoon showed C-PM1 concentrations lower than 60 µg m−3. A seasonal variation in C-PM1 composition was observed; SO42− showed a high contribution over pre-monsoon and monsoon seasons while NO3− and Cl− had a higher contribution in winter and post-monsoon. The main primary aerosol source was from traffic, which is consistent with the PMF analysis and aethalometer model analysis. Thus, in order to reduce PM1 concentrations in Delhi through local emission controls traffic emissions control offers the greatest opportunity. PMF-AMS mass spectra will help to improve future aerosol source apportionment studies. The information generated in this study increases our understanding of PM1 composition and OA sources in Delhi, India. Furthermore, the scientific findings provide significant information to strengthen legislation that aims to improve air quality in India.


2020 ◽  
Author(s):  
Tianran Zhang ◽  
Mark C. de Jong ◽  
Martin J. Wooster ◽  
Weidong Xu ◽  
Lili Wang

Abstract. Open burning of agricultural crop residues is widespread across eastern China, and during certain post-harvest periods this activity is believed to significantly influence air quality. However, the exact contribution of crop residue burning to major air quality exceedances and air quality episodes has proven difficult to quantify. Whilst highly successful in many regions, in areas dominated by agricultural burning MODIS-based fire emissions inventories such as GFAS and GFED are suspected of significantly underestimating the magnitude of biomass burning emissions due to the typically very small, but highly numerous, fires involved that are quite easily missed by coarser spatial resolution remote sensing observations. To address this issue, we here use twice daily fire radiative power (FRP) observations from the ‘small fire optimised’ VIIRS-IM FRP product, and combine it with fire diurnal cycle information taken from the geostationary Himawari-8 satellite. Using this we generate a unique high spatio-temporal resolution agricultural burning inventory for eastern China for the years 2012–2015, designed to fully take into account small fires well below the MODIS burned area or active fire detection limit, focusing on dry matter burned (DMB) and emissions of CO2, CO, PM2.5 and black carbon. We calculate DMB totals 100 to 400 % higher than reported by GFAS and GFED4.1s, and quantify interesting spatial and temporal patterns previously un-noted. Wheat residue burning, primarily occurring in May–June, is responsible for more than half of the annual crop residue burning emissions of all species, whilst a secondary peak in autumn (Sept–Oct) is associated with rice and corn residue burning. We further identify a new winter (Nov–Dec) burning season, hypothesised to be caused by delays in burning driven by the stronger implementation of residue burning bans during the autumn post-harvest season. Whilst our emissions estimates are far higher than those of other satellite-based emissions inventories for the region, they are lower than estimates made using traditional ‘crop yield-based approaches’ (CYBA) by a factor of between 2 and 5 x. We believe that this is at least in part caused by outdated and overly high burning ratios being used in the CYBA approach, leading to the overestimation of DMB. Therefore we conclude that that satellite remote sensing approaches which adequately detect the presence of agricultural fires are a far better approach to agricultural fire emission estimation.


2020 ◽  
Vol 20 (17) ◽  
pp. 10687-10705
Author(s):  
Tianran Zhang ◽  
Mark C. de Jong ◽  
Martin J. Wooster ◽  
Weidong Xu ◽  
Lili Wang

Abstract. Open burning of agricultural crop residues is widespread across eastern China, and during certain post-harvest periods this activity is believed to significantly influence air quality. However, the exact contribution of crop residue burning to major air quality exceedances and air quality episodes has proven difficult to quantify. Whilst highly successful in many regions, in areas dominated by agricultural burning, MODIS-based (MODIS: Moderate Resolution Imaging Spectroradiometer) fire emissions inventories such as the Global Fire Assimilation System (GFAS) and Global Fire Emissions Database (GFED) are suspected of significantly underestimating the magnitude of biomass burning emissions due to the typically very small, but highly numerous, fires involved that are quite easily missed by coarser-spatial-resolution remote sensing observations. To address this issue, we use twice-daily fire radiative power (FRP) observations from the “small-fire-optimised” VIIRS-IM FRP product and combine them with fire diurnal cycle information taken from the geostationary Himawari-8 satellite. Using this we generate a unique high-spatio-temporal-resolution agricultural burning inventory for eastern China for the years 2012–2015, designed to fully take into account small fires well below the MODIS burned area or active fire detection limit, focusing on dry matter burned (DMB) and emissions of CO2, CO, PM2.5, and black carbon. We calculate DMB totals 100 % to 400 % higher than reported by the GFAS and GFED4.1s, and we quantify interesting spatial and temporal patterns previously un-noted. Wheat residue burning, primarily occurring in May–June, is responsible for more than half of the annual crop residue burning emissions of all species, whilst a secondary peak in autumn (September–October) is associated with rice and corn residue burning. We further identify a new winter (November–December) burning season, hypothesised to be caused by delays in burning driven by the stronger implementation of residue burning bans during the autumn post-harvest season. Whilst our emissions estimates are far higher than those of other satellite-based emissions inventories for the region, they are lower than estimates made using traditional “crop-yield-based approaches” (CYBAs) by a factor of between 2 and 5. We believe that this is at least in part caused by outdated and overly high burning ratios being used in the CYBA, leading to the overestimation of DMB. Therefore, we conclude that satellite remote sensing approaches which adequately detect the presence of agricultural fires are a far better approach to agricultural fire emission estimation.


2013 ◽  
Vol 14 (1&2) ◽  
pp. 113-119
Author(s):  
Anil K. Raina ◽  
Anita Sharma

The monitoring of ambient air quality of Katra (one of the important town of Jammu from economic as well as religious point of view), at selected locations of residential areas, commercial areas and traffic crossings with respect to particulate matter (both respirable and non-respirable) has been conducted for a period of two years i.e. July 2010 – June 2012. Large variations in ambient particulate matter concentrations have been observed throughout the study period. Seasonally, the particulate matter exhibited low values during monsoon period and high values during post-monsoon period. The concentration of particulates (both respirable and non-respirable) in post monsoon season exceeded the concentrations than that of other seasons at most of the sites, thereby signifying the impact of local factors on pollutant concentrations, besides the impact of meteorological factors. Higher concentrations have been recorded in the year 2011-2012 as compared to 2010-2011 at all the sites except traffic crossings.


Sign in / Sign up

Export Citation Format

Share Document