post harvest
Recently Published Documents


TOTAL DOCUMENTS

4462
(FIVE YEARS 1464)

H-INDEX

64
(FIVE YEARS 8)

2022 ◽  
Vol 185 ◽  
pp. 111780
Author(s):  
Qingxi Yang ◽  
Qian Zhou ◽  
Xin Zhou ◽  
Huixin Fang ◽  
Yingbo Zhao ◽  
...  

2022 ◽  
Vol 293 ◽  
pp. 110710
Author(s):  
Anjali Rai ◽  
Khushboo Kumari ◽  
Prabhat Vashistha
Keyword(s):  

2022 ◽  
Vol 325 ◽  
pp. 107750
Author(s):  
Jared Lapierre ◽  
Pedro Vitor Ferrari Machado ◽  
Zachary Debruyn ◽  
Shannon E. Brown ◽  
Sean Jordan ◽  
...  

2022 ◽  
Vol 9 ◽  
Author(s):  
Sarah Köbke ◽  
Hongxing He ◽  
Matthias Böldt ◽  
Haitao Wang ◽  
Mehmet Senbayram ◽  
...  

Oilseed rape (Brassica napus L.) is an important bioenergy crop that contributes to the diversification of renewable energy supply and mitigation of fossil fuel CO2 emissions. Typical oilseed rape crop management includes the use of nitrogen (N) fertilizer and the incorporation of oilseed rape straw into soil after harvest. However, both management options risk increasing soil emissions of nitrous oxide (N2O). The aim of this 2-years field experiment was to identify the regulating factors of N cycling with emphasis on N2O emissions during the post-harvest period. As well as the N2O emission rates, soil ammonia (NH4+) and nitrate (NO3−) contents, crop residue and seed yield were also measured. Treatments included variation of fertilizer (non-fertilized, 90 and 180 kg N ha−1) and residue management (straw remaining, straw removal). Measured N2O emission data showed large intra- and inter-annual variations ranging from 0.5 (No-fert + str) to 1.0 kg N2O-N ha−1 (Fert-180 + str) in 2013 and from 4.1 (Fert-90 + str) to 7.3 kg N2O-N ha−1 (No-fert + str) in 2014. Cumulative N2O emissions showed that straw incorporation led to no difference or slightly reduced N2O emissions compared with treatments with straw removal, while N fertilization has no effect on post-harvest N2O emissions. A process-based model, CoupModel, was used to explain the large annual variation of N2O after calibration with measured environmental data. Both modeled and measured data suggest that soil water-filled pore space and temperature were the key factors controlling post-harvest N2O emissions, even though the model seemed to show a higher N2O response to the N fertilizer levels than our measured data. We conclude that straw incorporation in oilseed rape cropping is environmentally beneficial for mitigating N2O losses. The revealed importance of climate in regulating the emissions implies the value of multi-year measurements. Future studies should focus on new management practices to mitigate detrimental effects caused by global warming, for example by using cover crops.


2022 ◽  
Vol 8 (1) ◽  
pp. 76-80
Author(s):  
F. Agayev

All over the planet, potatoes are an important staple food crop. However, to maintain the quality of the tubers and increase their availability, it is necessary to store the tubers for a long time, often using industrial scale equipment. In this context, maintaining potato quality is critical for the seed, fresh and processing sectors. The industry has always innovated and invested in improved post-harvest storage. However, the rate of technological change is accelerating and will continue to accelerate. Stricter legislation and changing consumer attitudes are driving increased interest in creating alternative or complementary post-harvest treatments to traditional growth suppression and disease control chemicals. We are considering modern knowledge about the biochemical factors that determine the state of dormancy, as well as the influence of factors before and after harvest on ensuring the quality of potato tubers. In addition, the role of genomics as a future approach to improving potato quality is discussed. It is critical, thanks to more focused industry research, to understand how pre-harvest conditions affect tuber quality and the factors that determine the transition to dormancy, which should create the conditions for achieving sustainable storage.


2022 ◽  
Vol 8 (1) ◽  
pp. 80
Author(s):  
Yongmei Li ◽  
Mengyuan Xia ◽  
Pengbo He ◽  
Qiaoming Yang ◽  
Yixin Wu ◽  
...  

Citrus is among the most important plants in the fruit industry severely infected with pathogens. Citrus green mold caused by Penicillium digitatum is one of the most devastating diseases during post-harvest stages of citrus fruit. In this study, a potential endophyte Bacillus subtilis L1-21, isolated from healthy citrus plants, was assessed for its biocontrol activity against the pathogen P. digitatum. Based on an in vitro crosstalk assay, we suggested that B. subtilis L1-21 inhibits the pathogen with an inhibition zone of 3.51 ± 0.08 cm. Biocontrol efficacy was highest for the fermented culture filtrate of B. subtilis L1-21. Additionally, using GC-MS analysis, 13 compounds were detected in the extract of this endophyte. The culture filtrate in Landy medium could enlarge and deform pathogen spores and prevent them from developing into normal mycelium. Accordingly, the Landy culture filtrate of B. subtilis L1-21 was stable in the temperature range of 4–90 °C and pH of 3–11. Further, MALDI-TOF-MS for B. subtilis L1-21 detected surfactin, fengycin, bacillaene and bacilysin as potential antifungal compounds. GFP-tagged B. subtilis L1-21 easily colonized in citrus fruit peel and pulp, suggesting its role in eliminating the fungal pathogen. Altogether, it is highly expected that the production of antifungal compounds, and the colonization potential of B. subtilis L1-21 are required against the post-harvest P. digitatum pathogen on citrus fruit.


Author(s):  
Ahmed M. Bageel ◽  
Dulal Borthakur

AbstractGiant leucaena (Leucaena leucocephala subsp. glabrata) can be managed as a profusely branched bushy plant by repeated harvest of its foliage for use as fodder. The objective of this research was to determine the effects of soil pH and salinity, age of the leaves, post-harvest storage duration, and psyllid infection on the nutritional qualities of leucaena fodder. To determine the effects of soil pH and salinity on fodder quality, giant leucaena K636 plants were grown in large pots containing soils adjusted to different pH and salinity levels. The effects of age of the leaves, post-harvest storage duration and psyllid infection on fodder quality were studied using leucaena samples collected from Waimanalo Research Station. Among five pH levels tested, pH 6.0 was found to produce the highest amounts of protein and structural fibers in the foliage. Mimosine contents were highest at pH 6 and 7 and lowest at pH 5.0. The growth of giant leucaena was retarded and the nutritional quality were adversely affected under salinity conditions. Compared to young leaves, old leaves contained 18.5% less protein, 95% less mimosine, 30% less tannin and 40% more structural fibers. Post-harvest storage duration up to 72 h, at room temperature did not seem to affect protein, tannin and structural fiber contents of the foliage; however, mimosine content was reduced by 25%. These results will help to identify ideal soil pH, age of foliage, and post-harvest storage duration for obtaining high forage yield and nutritional quality for giant leucaena.


Author(s):  
Samuel Cola Pizetta ◽  
Fábio Ponciano de Deus ◽  
Patrícia Duarte de Oliveira Paiva ◽  
Adriano Valentim Diotto ◽  
Michael Silveira Thebaldi ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document