scholarly journals Seismic fragility curves of bridge piers accounting for ground motions in Korea

Author(s):  
Duy-Duan Nguyen ◽  
Tae-Hyung Lee

Abstract. Seismic fragility analysis is essential for seismic risk assessment of structures. This study focuses on the damage probability assessment of the mid-story isolation buildings with different locations of the isolation system. To this end, the performance-based fragility analysis method of the mid-story isolation system is proposed, adopting the maximum story drifts of structures above and below the isolation layer and displacement of the isolation layer as performance indicators. Then, the entire process of the mid-story isolation system, from the initial elastic state to the elastic-plastic state, then to the limit state, is simulated on the basis of the incremental dynamic analysis method. Seismic fragility curves are obtained for mid-story isolation buildings with different locations of the isolation layer, each with fragility curves for near-field and far-field ground motions, respectively. The results indicate that the seismic fragility probability subjected to the near-field ground motions is much greater than those subjected to the far-field ground motions. In addition, with the increase of the location of the isolation layer, the dominant components for the failure of mid-story isolated structures change from superstructure and isolation system to substructure and isolation system.


2017 ◽  
Vol 33 (1) ◽  
pp. 85-108 ◽  
Author(s):  
Xin Chu ◽  
James M. Ricles ◽  
Shamim N. Pakzad

This paper presents the seismic fragility assessment of the Smithsonian Institute Museum Support Center (MSC), which sustained appreciable damage during the 2011 Virginia earthquake. A three-dimensional (3-D) finite element model (FEM) for the building was created and validated using measured dynamic characteristics determined from field vibration test data. Two suites of bidirectional ground motions at different hazard levels were applied to the FEM to generate fragility curves for structural as well as nonstructural (storage cabinets) damage. The effect of brace yielding strength on structural and nonstructural damage is also investigated to provide recommendations for future retrofit. The fragility curves show that the spectral acceleration to cause structural damage to the building is not high. Due to low seismicity, however, the probability for the structure to be damaged at the design basis earthquake is small. Nevertheless, the probability for nonstructural damage is considerable, which is an important issue related to the seismic performance of the building.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Fa Che ◽  
Chao Yin ◽  
Jilei Zhou ◽  
Zhinan Hu ◽  
Xingkui Zhao ◽  
...  

Uncertainties of the ground motions and structural parameters are the main factors that limit the accuracy of embankment seismic fragility assessment. In response to the uncertainties of the ground motions, artificial synthesizing method of the near-fault pulse-like ground motions was proposed, and 15 ground motions with the rupture fault distances ranging from 1 to 15 km were synthesized by taking the Chi-Chi earthquake in Taiwan, China, as an example. The Xi’an-Baoji expressway K1125 + 470 embankment was taken as the research object, and a total of 12 structural parameters were selected as the design variables, namely, the elastic modulus, bulk modulus, shear modulus, density, cohesion force, and internal friction angle of the embankment fill and soil foundation, respectively. In response to the uncertainties of these parameters, 3 principal components with large impacts on the embankment seismic fragility were extracted based on the principal component analysis. Mapping relationships among the principal components and embankment seismic damages were analyzed using the uniform design response surface method, and the seismic fragility assessment was carried out and the fragility curves were plotted. The research results are consistent with the actual embankment seismic damage conditions of the Chi-Chi earthquake, indicating that the proposed method is scientific and reasonable. It also shows that it would obviously overestimate the seismic performance in the embankment seismic fragility assessment without considering the uncertainties of the ground motions and structural parameters.


Author(s):  
Saif Aldabagh ◽  
Saqib Khan ◽  
M. Shahria Alam

Design codes in the United States and Canada limit the use of high-strength steel (HSS) and high-strength concrete (HSC) to bridge components that are expected to remain elastic during a seismic event. Although HSS and HSC have higher tensile and compressive strengths, respectively, their lower inelastic strain capacities impose for such restrictions. To assess the seismic performance of HSS and HSC, the pier of an existing bridge is redesigned using concrete compressive strength of 50 and 80 MPa, and reinforcement yield strength of 420, 690, and 830 MPa. Static pushover and nonlinear dynamic time-history analyses were performed to generate force-deformation and seismic fragility curves. Bridge piers incorporating HSS and HSC attained the maximum load capacity yet were the least ductile. They were less seismically vulnerable than those incorporating conventional materials at minimal and repairable damage states, but not at extensive and probable replacement damage states.


2019 ◽  
Vol 30 (1) ◽  
pp. 74-85
Author(s):  
Abdelhamid Hebbouche ◽  
Mahmoud Bensaibi ◽  
Hussein Mroueh ◽  
Mohamed Draidi Bensalah

2016 ◽  
Vol 16 (05) ◽  
pp. 1550010 ◽  
Author(s):  
Chao Li ◽  
Hong Hao ◽  
Hongnan Li ◽  
Kaiming Bi

This paper studies the time-dependent seismic fragility of reinforced concrete bridges with chloride induced corrosion under spatially varying ground motions. The time-varying characteristic of the chloride corrosion current density and the uncertainties related to the structural, material and corrosion parameters are both considered in the probabilistic finite element modeling of the example RC bridge at different time steps during its life-cycle. Spatially varying ground motions at different bridge supports are stochastically simulated and used as inputs in the fragility analysis. Seismic fragility curves of the corroded RC bridge at different time steps are generated using the probabilistic seismic demand analysis (PSDA) method. Numerical results indicate that both chloride induced corrosion and ground motion spatial variations have a significant effect on the bridge structural seismic fragility. As compared to the intact bridge, the mean peak ground accelerations (PGAs) of the fragility curves of the RC bridge decrease by approximately 40% after 90 years since the initiation of corrosion. Moreover, the effect of ground motion spatial variations changes along with the process of chloride induced corrosion owing to the structural stiffness degradation. Neglecting seismic ground motion spatial variations may not lead to an accurate estimation of the lifetime seismic fragility of RC bridges with chloride induced corrosion.


Sign in / Sign up

Export Citation Format

Share Document