Seismic Fragility Analysis of the Smithsonian Institute Museum Support Center

2017 ◽  
Vol 33 (1) ◽  
pp. 85-108 ◽  
Author(s):  
Xin Chu ◽  
James M. Ricles ◽  
Shamim N. Pakzad

This paper presents the seismic fragility assessment of the Smithsonian Institute Museum Support Center (MSC), which sustained appreciable damage during the 2011 Virginia earthquake. A three-dimensional (3-D) finite element model (FEM) for the building was created and validated using measured dynamic characteristics determined from field vibration test data. Two suites of bidirectional ground motions at different hazard levels were applied to the FEM to generate fragility curves for structural as well as nonstructural (storage cabinets) damage. The effect of brace yielding strength on structural and nonstructural damage is also investigated to provide recommendations for future retrofit. The fragility curves show that the spectral acceleration to cause structural damage to the building is not high. Due to low seismicity, however, the probability for the structure to be damaged at the design basis earthquake is small. Nevertheless, the probability for nonstructural damage is considerable, which is an important issue related to the seismic performance of the building.

2019 ◽  
Vol 9 (21) ◽  
pp. 4660
Author(s):  
Quang Huy Tran ◽  
Jungwon Huh ◽  
Nhu Son Doan ◽  
Van Ha Mac ◽  
Jin-Hee Ahn

While the container crane is an important part of daily port operations, it has received little attention in comparison with other infrastructures such as buildings and bridges. Crane collapses owing to earthquakes affect the operation of the port and indirectly impact the economy. This study proposes fragility analyses for various damage levels of a container crane, thus enabling the port owner and partners to better understand the seismic vulnerability presented by container cranes. A large number of nonlinear time-history analyses were applied for a three-dimensional (3D) finite element model to quantify the vulnerability of a Korean case-study container crane considering the uplift and derailment behavior. The uncertainty of the demand and capacity of the crane structures were also considered through random variables, i.e., the elastic modulus of members, ground motion profile, and intensity. The results analyzed in the case of the Korean container crane indicated the probability of exceeding the first uplift with or without derailment before the crane reached the structure’s limit states. This implies that under low seismic excitation, the crane may be derailed without any structural damage. However, when the crane reaches the minor damage state, this condition is always coupled with a certain probability of uplift with or without derailment. Furthermore, this study proposes fragility curves developed for different structural periods to enable port stakeholders to assess the risk of their container crane.


Author(s):  
Quang Huy Tran ◽  
Jungwon Huh ◽  
Nhu Son Doan ◽  
Van Ha Mac ◽  
Jin-Hee Ahn

While the container crane is an important part of daily port operations, it has received little attention compared with other infrastructures, such as buildings and bridges. Crane collapse due to earthquake affects the operation of the port, and indirectly impacts the economy. This study proposes fragility analyses for various damage levels of the container crane that allow the port owner and partners to better understand the seismic vulnerability presented by container cranes. A large quantity of nonlinear time history analyses was applied for a three-dimensional (3D) finite element model to quantify the vulnerability of the container crane in considering the uplift and derailment behavior. The uncertainty of demand and capacity of the crane structures were also considered through random variables, i.e. elastic modulus of members, ground motion profile, and intensity. The results analyzed in the case of a Korean container crane showed that the probability of exceeding the first uplift with or without derailment is shown before the crane reaches the structure’s limit states. This means that under low seismic excitation, the crane might be derailed without any structural damage. But when the crane reaches the minor damage state, it is always coupled with a certain probability of uplift with or without derailment. This study also proposes the fragility curves developed for different structural periods to enable port stakeholders to assess the risk of their container crane.


Abstract. Seismic fragility analysis is essential for seismic risk assessment of structures. This study focuses on the damage probability assessment of the mid-story isolation buildings with different locations of the isolation system. To this end, the performance-based fragility analysis method of the mid-story isolation system is proposed, adopting the maximum story drifts of structures above and below the isolation layer and displacement of the isolation layer as performance indicators. Then, the entire process of the mid-story isolation system, from the initial elastic state to the elastic-plastic state, then to the limit state, is simulated on the basis of the incremental dynamic analysis method. Seismic fragility curves are obtained for mid-story isolation buildings with different locations of the isolation layer, each with fragility curves for near-field and far-field ground motions, respectively. The results indicate that the seismic fragility probability subjected to the near-field ground motions is much greater than those subjected to the far-field ground motions. In addition, with the increase of the location of the isolation layer, the dominant components for the failure of mid-story isolated structures change from superstructure and isolation system to substructure and isolation system.


2013 ◽  
Vol 361-363 ◽  
pp. 1765-1771
Author(s):  
Chong Wei Huang ◽  
Shuo Wang ◽  
Xian Zhi Shao ◽  
Xian Zhao Du ◽  
Er Hao Su

Based on the differences between the subgrade of tramcar with monolithic track-bed and the existing subgrade of railway, anew three-dimensional nonlinear finite element model is established in this paper. And then,the numerical analyses are conducted by considering weight load of track structure. The characteristics of mechanical response in the subgrade of tramcar with monolithic track-bed are found by finite analysis, which offers a reference for the future engineering, in terms of the design concept, design basis and theoretical support as well as the basis for decision making.


2021 ◽  
Vol 11 (24) ◽  
pp. 11709
Author(s):  
Xinyong Xu ◽  
Xuhui Liu ◽  
Li Jiang ◽  
Mohd Yawar Ali Khan

The Concrete Damaged Plasticity (CDP) constitutive is introduced to study the dynamic failure mechanism and the law of damage development to the aqueduct structure during the seismic duration using a large-scale aqueduct structure from the South-to-North Water Division Project (SNWDP) as a research object. Incremental dynamic analysis (IDA) and multiple stripe analysis (MSA) seismic fragility methods are introduced. The spectral acceleration is used as the scale of ground motion record intensity measure (IM), and the aqueduct pier top offset ratio quantifies the limit of structural damage measure (DM). The aqueduct structure’s seismic fragility evaluation curves are constructed with indicators of different seismic intensity measures to depict the damage characteristics of aqueduct structures under different seismic intensities through probability. The results show that penetrating damage is most likely to occur on both sides of the pier cap and around the pier shaft in the event of a rare earthquake, followed by the top of the aqueduct body, which requires the greatest care during an earthquake. The results of two fragility analysis methodologies reveal that the fragility curves are very similar. The aqueduct structure’s first limit state level (LS1) is quite steep and near the vertical line, indicating that maintaining the excellent condition without damage in the seismic analysis will be challenging. Except for individual results, the overall fragility results are in good agreement, and the curve change rule is the same. The exceedance probability in the case of any ground motion record IM may be estimated using only two factors when using the MSA approach, and the computation efficiency is higher. The study of seismic fragility analysis methods in this paper can provide a reference for the seismic safety evaluation of aqueducts and similar structures.


2006 ◽  
Vol 22 (3) ◽  
pp. 781-802 ◽  
Author(s):  
Derek Skolnik ◽  
Ying Lei ◽  
Eunjong Yu ◽  
John W. Wallace

Identification of the modal properties of the UCLA Factor Building, a 15-story steel moment-resisting frame, is performed using low-amplitude earthquake and ambient vibration data. The numerical algorithm for subspace state-space system identification is employed to identify the structural frequencies, damping ratios, and mode shapes corresponding to the first nine modes. The frequencies and mode shapes identified based on the data recorded during the 2004 Parkfield earthquake ( Mw=6.0) are used to update a three-dimensional finite element model of the building to improve correlation between analytical and identified modal properties and responses. A linear dynamic analysis of the updated model excited by the 1994 Northridge earthquake is performed to assess the likelihood of structural damage.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6357
Author(s):  
Qingyang Wei ◽  
Hao Xu ◽  
Yifei Li ◽  
Li Chen ◽  
Drahomír Novák ◽  
...  

As a global vibration characteristic, natural frequency often suffers from insufficient sensitivity to structural damage, which is associated with local variations of structural material or geometric properties. Such a drawback is particularly significant when dealing with the large scale and complexity of sluice structural systems. To this end, a damage detection method in sluice hoist beams is proposed that relies on the utilization of the local primary frequency (LPF), which is obtained based on the swept frequency excitation (SFE) technique and local resonance response band (LRRB) selection. Using this method, the local mode of the target sluice hoist beam can be effectively excited, while the vibrations of other components in the system are suppressed. As a result, the damage will cause a significant shift in the LPF of the sluice hoist beam at the local mode. A damage index was constructed to quantitatively reflect the damage degree of the sluice hoist beam. The accuracy and reliability of the proposed method were verified on a three-dimensional finite element model of a sluice system, with the noise resistance increased from 0.05 to 0.2 based on the hammer impact method. The proposed method exhibits promising potential for damage detection in complex structural systems.


2011 ◽  
Vol 90-93 ◽  
pp. 1220-1223
Author(s):  
Chun Hui Zhang ◽  
Xing Jun Qi ◽  
Qi Hui Chen

In this article, an inclined leg bridge is taken as the research object. The three-dimensional finite element model is established, and soil spring is used to simulate soil-pile interaction. The dynamic characteristics of the two models are calculated. Two different ground motions are selected to analyze seismic response of the bridge. The dynamic characteristics and seismic response of bridge are compared in the conditions whether considering soil-pile interaction. The results show that the stress and displacement under qian’an ground motion action is bigger than that under Elcentro ground motion because the two ground motions have different frequency characteristics .After considering soil-pile interaction, the natural frequencies of inclined leg bridge decrease, and the longitudinal displacement of bridge increases obviously, at the same time the stress in the top and bottom of inclined leg increase obviously and the stress among main girder is not obviously increased. Soil-pile interaction maybe cause some adverse effect for inclined leg rigid frame bridge.


Sign in / Sign up

Export Citation Format

Share Document