scholarly journals Short-term forecast of Yangtze River water level based on Long Short-Term Memory neural network

2021 ◽  
Vol 831 (1) ◽  
pp. 012051
Author(s):  
Shinan Chen ◽  
Yunkai Qiao
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Si Ha ◽  
Darong Liu ◽  
Lin Mu

AbstractAccurate long-term streamflow and flood forecasting have always been an important research direction in hydrology research. Nowadays, climate change, floods, and other anomalies occurring more and more frequently and bringing great losses to society. The prediction of streamflow, especially flood prediction, is important for disaster prevention. Current hydrological models based on physical mechanisms can give accurate predictions of streamflow, but the effective prediction period is only about 1 month in advance, which is too short for decision making. The artificial neural network (ANN) has great potential for predicting runoff and is not only good at handling non-linear data but can also make long-period forecasts. However, most of ANN models are unstable in their predictions when faced with raw flow data, and have excessive errors in predicting extreme flows. Previous studies have shown a link between the El Niño–Southern Oscillation (ENSO) and the streamflow of the Yangtze River. In this paper, we use ENSO and the monthly streamflow data of the Yangtze River from 1952 to 2018 to predict the monthly streamflow of the Yangtze River in two extreme flood years and a small flood year by using deep neural networks. In this paper, three deep neural network frameworks are used: stacked long short-term memory, Conv long short-term memory encoder–decoder long short-term memory and Conv long short-term memory encoder–decoder gate recurrent unit. The results show that the use of ConvLSTM improves the stability of the model and increases the accuracy of the flood prediction. Besides, the introduction of ENSO to the experimental data resulted in a more accurate prediction of the time of the occurrence of flood peaks and flood flows. Furthermore, the best results were obtained on the convolutional long short-term memory + encoder–decoder gate recurrent unit model.


2020 ◽  
Vol 13 (1) ◽  
pp. 104
Author(s):  
Dana-Mihaela Petroșanu ◽  
Alexandru Pîrjan

The accurate forecasting of the hourly month-ahead electricity consumption represents a very important aspect for non-household electricity consumers and system operators, and at the same time represents a key factor in what regards energy efficiency and achieving sustainable economic, business, and management operations. In this context, we have devised, developed, and validated within the paper an hourly month ahead electricity consumption forecasting method. This method is based on a bidirectional long-short-term memory (BiLSTM) artificial neural network (ANN) enhanced with a multiple simultaneously decreasing delays approach coupled with function fitting neural networks (FITNETs). The developed method targets the hourly month-ahead total electricity consumption at the level of a commercial center-type consumer and for the hourly month ahead consumption of its refrigerator storage room. The developed approach offers excellent forecasting results, highlighted by the validation stage’s results along with the registered performance metrics, namely 0.0495 for the root mean square error (RMSE) performance metric for the total hourly month-ahead electricity consumption and 0.0284 for the refrigerator storage room. We aimed for and managed to attain an hourly month-ahead consumed electricity prediction without experiencing a significant drop in the forecasting accuracy that usually tends to occur after the first two weeks, therefore achieving a reliable method that satisfies the contractor’s needs, being able to enhance his/her activity from the economic, business, and management perspectives. Even if the devised, developed, and validated forecasting solution for the hourly consumption targets a commercial center-type consumer, based on its accuracy, this solution can also represent a useful tool for other non-household electricity consumers due to its generalization capability.


Sign in / Sign up

Export Citation Format

Share Document