Behavior of sustainable Reactive Powder Concrete by Using Glass Powder as a Replacement of Cement
Abstract Every year, the world produces one million tons of glass garbage. Once the glass has been broken down, it is dumped in landfills, where it will remain inert for hundreds of years. glass is mainly made of silica. For long-term infrastructure development, ground glass as a partial cement substitute may be a major advance (environmentally friendly, energy-saving, and economic). Secondary calcium silicate hydrate is expected to be produced when glass waste is crushed into microscopic particles and then reacts with cement hydrate through pozzolanic interactions (C-S-H). There were experiments done on concrete utilizing (0-35 per cent) ground glass and superplasticizer, silica fume, fine sand and fibres, with the water to binder (cement + glass) ratio maintained constant for all degrees of replacement on compressive strength, modulus of elasticity and tensile strength. Steel is a fixed quantity that applies to all conceivable configurations. Concrete cube samples were made and tested for strength (28 days curing). It was discovered that the recycled glass concrete outperformed control samples in compressive strength tests. Compressive strength, tensile strength, and modulus of elasticity are all greatest in the 25 per cent glass powder. It was decided that using recycled glass trash in place of 25 per cent of the cement was a good idea because of the economic and environmental advantages.