scholarly journals Strut and Ring Connection System Design on External Fixator Based on Hexapod to Increase Bone Flexibility Reconstruction Using Finite Element Analysis List the author names here

Author(s):  
Y I D Wijaya ◽  
S. Susmartini ◽  
L. Herdiman
2015 ◽  
Vol 100 ◽  
pp. 1598-1607 ◽  
Author(s):  
Mešić Elmedin ◽  
Avdić Vahid ◽  
Pervan Nedim ◽  
Repčić Nedžad

2000 ◽  
Vol 13 (02) ◽  
pp. 65-72 ◽  
Author(s):  
R. Shahar

SummaryThe use of acrylic connecting bars in external fixators has become widespread in veterinary orthopaedics. One of the main advantages of an acrylic connecting bar is the ability to contour it into a curved shape. This allows the surgeon to place the transcortical pins according to safety and convenience considerations, without being bound by the requirement of the standard stainless steel connecting bar, that all transcortical pins be in the same plane.The purpose of this study was to evaluate the stiffness of unilateral and bilateral medium-sized external fixator frames with different curvatures of acrylic connecting bars. Finite element analysis was used to model the various frames and obtain their stiffness under four types of load: Axial compression, four-point medio-lateral bending, fourpoint antero-posterior bending and torsion. The analysis also provided the maximal pin stresses occurring in each frame for each loading condition.Based on the results of this study, curvatures of acrylic connecting bars of up to a maximal angular difference between pins of 25° will result in very similar stiffness and maximal pin stresses to those of the equivalent, uniplanar stainless steel system. In both unilateral and bilateral systems the stiffness decreases slightly as angulation increases for axial compression and medio-lateral bending, increases slightly for torsion and increases substantially for antero-posterior bending.External fixator systems with curved acrylic connecting bars are commonly used in veterinary orthopaedics. This paper evaluates the biomechanical performance of such systems by applying the finite element analysis method. It shows that external fixators with curved acrylic connecting bars exhibit stiffness and maximal pin stresses which are similar to those of the standard stainless steel system.


2012 ◽  
Vol 538-541 ◽  
pp. 3047-3050
Author(s):  
Nai Gen Li ◽  
Nian Jun Zhang ◽  
Meng Guo Zhu

The mechanical system design method based on the Service Oriented Architecture was proposed through the service-oriented architecture technology and mechanical system design theory analysis .The machine arm system design finite element analysis process was presented. Based on the TomCat platform design, Service oriented architecture design of the robot arm system design based on finite element analysis process were established. This design method was verified technically.


2020 ◽  
Vol 899 ◽  
pp. 94-102
Author(s):  
Nur Faiqa Ismail ◽  
Muhammmad Aiman Firdaus Bin Adnan ◽  
Solehuddin Shuib ◽  
Nik Ahmad Hambali Nik Abd Rashid

External fixator has played an important role in repairing fractured ankle bone. This surgery is done due to the several factors which are the bone is not normal position or has broken into several pieces. The external fixator will help the broken bone to grow and remodel back to the original appearance. However, there are some issues regarding to the stability of this fixation. Improper design and material are the major factor that decreased the stability since it is related to the deformation of the external fixator to hold the bone fracture area. This study aims to design a stable structure for constructing delta frame ankle external fixator to increase the stability of the fixation. There are two designs of external fixator with two types of material used in this present study. Both external fixators with different materials are analyzed in terms of von Mises stress and deformation by using a conventional Finite Element Analysis software; ANSYS Workbench V15. The result obtained shows the Model 1 with stainless steel has less stress and deformation distributions compared to the Model 2. Hence, by using Model 1 as the external fixator, the stability of the fixation can be increased.


2019 ◽  
Author(s):  
Masoud Davari ◽  
Mahyar Ramezani ◽  
Aliakbar Hayatdavoodi ◽  
Mohammad Nazari

Beam-to-column connections affect the rigidity and strength of the overall precast concrete structures. Even though many experimental researches have been carried out on beam-to-column connections, the behavior and failure mode of the connection in precast concrete is often difficult to assess through experimental program. The finite element analysis, on the other hand, can be an option to properly evaluate the condition of the connections. Nevertheless, the finite element analysis on the beam-to-column connections is quite limited. Thus, there is a need to study and explore the behavior of the connection system based on the finite element data. In this research, the finite element analysis was performed to study the performance of different types of beam-to-column connections in precast concrete frames. A total of four specimens were modeled and analyzed to study the connection behavior involving load-displacement relationship under static incremental load. Different connection details were considered and the behavior of various beam-to-column connections were investigated.


2020 ◽  
Vol 59 (4) ◽  
pp. 664-672 ◽  
Author(s):  
Muhammad Hanif Ramlee ◽  
Hong Seng Gan ◽  
Siti Asmah Daud ◽  
Asnida Abdul Wahab ◽  
Mohammed Rafiq Abdul Kadir

2021 ◽  
Vol 11 (8) ◽  
pp. 3689
Author(s):  
Martin Goubej ◽  
Jana Königsmarková ◽  
Ronald Kampinga ◽  
Jakko Nieuwenkamp ◽  
Stéphane Paquay

The paper deals with development of a methodology for mechatronic system design using state-of-the-art model-based system engineering methods. A simple flexible robotic arm is considered as a benchmark problem for the evaluation of various techniques used in the phases of modelling, analysis, control system design, validation, and implementation. The flexible nature of the mechanical structure introduces inherently oscillatory dynamics in the target bandwidth range, which complicates all the above-mentioned design steps. This paper demonstrates the process of deriving a complex nonlinear model of the flexible arm setup. An initial idea about the plant dynamics is acquired from analytical modelling using the Euler–Bernoulli beam theory. A more thorough understanding is subsequently acquired from finite element analysis. Linearisation and order reduction are the next steps necessary for the derivation of a simplified control-relevant model. A time-dependent variable parameter of load mass position is considered and a robust controller is subsequently designed in order to fulfil certain performance criteria for all the admissible plant configurations. This is performed using a recent H-infinity loop shaping method for fixed structure controller design. The results are validated by means of a physical plant, comparing the experimental data with the model predictions.


Sign in / Sign up

Export Citation Format

Share Document