scholarly journals Naval U-tube Heat Exchanger, design and CFX analysis

Author(s):  
C L Dumitrache ◽  
D Deleanu
2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Kamlesh M. Chikhaliya ◽  
Bhaveshkumar P. Patel

Flanged and flued type expansion joint (thick wall expansion bellow) used as an integral part of many shell and tube heat exchanger where process conditions produce differential expansion between shell and tubes. It provides flexibility for thermal expansion and also functions as a pressure retaining part. Design of expansion joints is usually based on trial and error method in which initial geometry must be assumed, and accordingly maximum stresses and spring rate are be calculated. Inadequate selection of geometry leads to higher tubesheet and bellow thickness, which increases cost of equipment. This paper presents standardization and optimum design approach of flange and flued expansion bellow fulfilling ASME VIII-1 and TEMA standard requirement. Methodology to define expansion bellow geometry is developed, and geometry dimensions are tabulated for expansion bellow diameter from 300 to 2000 mm and thickness from 6 to 30 mm. Each defined geometry is analyzed using finite element method, and maximum von Mises stresses are calculated for bellow axial displacement from 0.5 to 1.5 mm and internal pressure from 0.1 to 6.5 MPa. Spring rate is also calculated for each defined geometry for consideration in tubesheet calculation. Accordingly, optimum design methodology is developed, tested, and compared with existing design. Results depicted that proposed standardization approach and design methodology will optimize expansion bellow and tubesheet thickness and will also save considerable time in finalization of heat exchanger design.


AIChE Journal ◽  
2016 ◽  
Vol 63 (6) ◽  
pp. 1907-1922 ◽  
Author(s):  
Caroline de O. Gonçalves ◽  
André L. H. Costa ◽  
Miguel J. Bagajewicz

Author(s):  
Michel De Paepe ◽  
Christophe T’Joen ◽  
Arnold Janssens ◽  
Marijke Steeman

Earth-air heat exchangers are often used for (pre)heating or (pre)cooling of ventilation air in low energy or passive house standard buildings. Several studies have been published in the passed about the performance of these earth-air heat exchangers [1–8]. Often this is done in relation to the building energy use. Several software codes are available with which the behaviour of the earth-air heat exchanger can be simulated. De Paepe and Janssens published a simplified design methodology for earth-air heat exchangers, based on thermal to hydraulic performance optimisation [7]. Through dynamic simulations and measurements it was shown that the methodology is quite conservative [9–10]. Hollmu¨ller added an earth-air heat exchanger model to TRNSYS [11]. In stead of using earth-air heat exchangers, earth-water heat exchangers are now getting more attention. In this system the ventilation air is indirectly cooled/heated with the water flow in a fin-tube heat exchanger in the inlet of the ventilation channel. The water-glycol mixture transfers heat with the earth by flowing through e.g. a polyethylene tube. In the second part of this paper a design methodology is first derived and then applied to this type of system.


Author(s):  
Torsten Berning

This paper describes the development of a numerical algorithm and a graphical method that can be employed in order to determine the overall heat transfer coefficient inside heat exchangers. The method is based on an energy balance and utilizes the spreadsheet application software Microsoft Excel™. The application is demonstrated in an example for designing a single pass shell and tube heat exchanger that was developed in the Department of Materials Technology of the Norwegian University of Science and Technology (NTNU) where water vapor is superheated by a secondary oil cycle. This approach can be used to reduce the number of hardware iterations in heat exchanger design.


2017 ◽  
Author(s):  
Dipankar Mandal

The paper proposes a calculation algorithm and development of a software in Visual Basic(Visual Studio 2012 Express Desktop) used in heat transfer studies when different heat exchangers are involved (e.g. Helical Type Triple Tube Heat Exchanger , Plate Type Heat Exchanger).It includes the easy calculation of heat transfer co-efficient and followed by the design and simulation of heat exchanger design parameter by inputting general known parameters of a heat exchanger into the developed software-DAIRY-HE. A parametric study is conducted using the software interface to determine the length of tubes or dimensions of heat exchanger.


Sign in / Sign up

Export Citation Format

Share Document