Mechanical, in-situ electrical and thermal properties of wearable conductive textile yarn coated with polypyrrole/carbon black composite

2018 ◽  
Vol 6 (1) ◽  
pp. 016307 ◽  
Author(s):  
R Villanueva ◽  
D Ganta ◽  
C Guzman
2019 ◽  
Vol 70 (02) ◽  
pp. 116-119 ◽  
Author(s):  
BUHU LILIANA ◽  
NEGRU DANIELA ◽  
LOGHIN EMIL CONSTANTIN ◽  
BUHU ADRIAN

In this paper conductive yarns were made by coating the yarns with a solution having carbon black nanoparticles (CB) with an average diameter of 18 nm, polyvinyl alcohol (PVA) and water. For a continuous coating deposition it is necessary to obtain a solution of a certain consistency; for this reason, carbon black nanoparticles are mixed with the ingredients so that the resulting film deposited as a thin layer on the yarn to be conductive, and at the same time flexible. The carbon black nanoparticles tend to form aggregates; this is why the solution should be stirred continuously. The yarns used as support are different from the nature, fineness and structure point of view. Several variants of yarns were chosen in order to decide which ones are appropriate for obtaining conductive yarns that keep their specific initial properties. The variants of conductive yarns obtained were tested in terms of physical and mechanical properties (tensile strength, elongation), and from the viewpoint of electrical properties, electrical resistivity was measured. After coating the conductive layer, yarns shows greater rigidity, but can be used to obtain textile materials such as woven fabrics. After performing the measurements, it can be concluded that the yarns coated with a conductive solution based on CB shows electrical conductivity and can be used for obtaining conductive textile fabrics.


2003 ◽  
Vol 778 ◽  
Author(s):  
Rajdip Bandyopadhyaya ◽  
Weizhi Rong ◽  
Yong J. Suh ◽  
Sheldon K. Friedlander

AbstractCarbon black in the form of nanoparticle chains is used as a reinforcing filler in elastomers. However, the dynamics of the filler particles under tension and their role in the improvement of the mechanical properties of rubber are not well understood. We have studied experimentally the dynamics of isolated nanoparticle chain aggregates (NCAs) of carbon made by laser ablation, and also that of carbon black embedded in a polymer film. In situ studies of stretching and contraction of such chains in the transmission electron microscope (TEM) were conducted under different maximum values of strain. Stretching causes initially folded NCA to reorganize into a straight, taut configuration. Further stretching leads to either plastic deformation and breakage (at 37.4% strain) or to a partial elastic behavior of the chain at small strains (e.g. 2.3% strain). For all cases the chains were very flexible under tension. Similar reorientation and stretching was observed for carbon black chains embedded in a polymer film. Such flexible and elastic nature of NCAs point towards a possible mechanism of reinforcement of rubber by carbon black fillers.


2017 ◽  
Vol 266 ◽  
pp. 172-176
Author(s):  
Pattarawadee Maijan ◽  
Nitinart Saetung ◽  
Wisut Kaewsakul

Mixing behaviors of the compounds filled with different reinforcing fillers were studied in correlation with compound and vulcanizate properties. Four filler systems were used including: 1) silica plus small amount of silane coupling agent; 2) carbon black; 3) pre-modified silica; and 4) silica+silane-carbon black mixed one. The results have shown that silica provides longer optimum cure time and shorter cure rate than carbon black due to accelerator adsorption on silica surface. In addition, owing to highly polar nature on silica surface the silica-based compounds show rather high viscosity, attributed to stronger filler-filler interaction as can be confirmed by Payne effect and reinforcement index. However, the commercial surface treatment or pre-modified form of silica shows superior properties than in-situ modification of silica by silane during mixing, while it gives comparable properties to carbon black-based compound. Tensile properties of vulcanizates show a good correlation with the basic properties of their compounds.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 894 ◽  
Author(s):  
Hongjiao Lin ◽  
Hejun Li ◽  
Qingliang Shen ◽  
Xiaohong Shi ◽  
Tao Feng ◽  
...  

An in-situ, catalyst-free method for synthesizing 3C-SiC ceramic nanowires (SiCNWs) inside carbon–carbon (C/C) composites was successfully achieved. Obtained samples in different stages were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman scattering spectroscopy. Results demonstrated that the combination of sol-gel impregnation and carbothermal reduction was an efficient method for in-situ SiCNW synthesis, inside C/C composites. Thermal properties and mechanical behaviors—including out-of-plane and in-plane compressive strengths, as well as interlaminar shear strength (ILLS) of SiCNW modified C/C composites—were investigated. By introducing SiCNWs, the initial oxidation temperature of C/C was increased remarkably. Meanwhile, out-of-plane and in-plane compressive strengths, as well as interlaminar shear strength (ILLS) of C/C composites were increased by 249.3%, 109.2%, and 190.0%, respectively. This significant improvement resulted from simultaneous reinforcement between the fiber/matrix (F/M) and matrix/matrix (M/M) interfaces, based on analysis of the fracture mechanism.


2020 ◽  
Vol 14 (2) ◽  
pp. 213
Author(s):  
Valentinus Galih Vidia Putra ◽  
Lutfi Zulfikar ◽  
Atin Sumihartanti ◽  
Juliany Ningsih Mohamad ◽  
Yusril Yusuf

This study aims to develop conductive textile materials using a polyester textile yarn by applying a knife coating method and pre-treatment of a tip-cylinder plasma electrode. In this research, carbon ink was coated on polyester staple yarn which was given a pre-treatment with a plasma generator and coated with the knife coating method. The electrical conductivity of conductive yarns produced from this study was divided into two types, as yarns without plasma treatment and with plasma treatment with a ratio of water and carbon ink concentrations of 1:1 and 2:1. The results of the electrical conductivity with plasma treatment and the concentration of carbon ink and water of 1:1 and 1:2 were 69005 (Ωm)-1 and 50144.25 (Ωm)-1, respectively, while the results of the electrical conductivity for threads with concentrations of carbon ink and water of 1:1 and 1:2 without plasma treatment were 18197.64 (Ωm)­‑1  and 8873.54 (Ωm)-1, respectively. The results showed that the concentration of carbon ink and water and plasma treatment affected the conductive value of the yarn. The results also showed that the presence of plasma pre-treatment improved the coating process of conductive ink on the yarn.Keywords: carbon ink; conductive yarn; plasma; textile A B S T R A KPenelitian ini bertujuan untuk mengembangkan bahan tekstil konduktif menggunakan benang tekstil poliester dengan mengaplikasikan metode knife coating dan pre-treatment plasma elektroda tip-cylinder. Pada penelitian ini dilakukan pelapisan dengan tinta karbon pada benang poliester stapel yang diberi perlakuan awal dengan plasma generator dan dilapisi dengan metode pelapisan knife coating. Konduktivitas listrik benang konduktif yang dihasilkan dari penelitian ini dibagi menjadi dua jenis, yaitu benang tanpa perlakuan plasma dan dengan perlakuan plasma dengan perbandingan konsentrasi air dan tinta karbon sebesar 1:1 dan 2:1. Hasil konduktivitas listrik dengan perlakuan plasma dan konsentrasi tinta karbon dan air sebesar 1:1 dan 1:2 masing-masing adalah 69005 (Ωm)‑1 dan 50144,25 (Ωm)-1, sedangkan hasil konduktivitas listrik untuk benang dengan konsentrasi tinta karbon dan air sebesar 1:1 dan 1:2 tanpa perlakuan plasma masing-masing adalah 18197,64 (Ωm)-1 dan 8873,54 (Ωm)-1. Hasil penelitian menunjukkan bahwa konsentrasi tinta karbon dan air serta perlakuan plasma berpengaruh terhadap nilai konduktivitas benang serta adanya pre-treatment plasma dapat meningkatkan proses coating tinta konduktif pada benang.Kata kunci: benang konduktif; plasma; tekstil; tinta karbon 


Sign in / Sign up

Export Citation Format

Share Document