2017 ◽  
Vol 4 (1) ◽  
pp. 263-272 ◽  
Author(s):  
Niccolò Lora Lamia Donin

Abstract In this paper we consider a special class of completely integrable systems that arise as transverse Hilbert schemes of d points of a complex symplectic surface S projecting onto ℂ via a surjective map p which is a submersion outside a discrete subset of S. We explicitly endow the transverse Hilbert scheme Sp[d] with a symplectic form and an endomorphism A of its tangent space with 2-dimensional eigenspaces and such that its characteristic polynomial is the square of its minimum polynomial and show it has the maximal number of commuting Hamiltonians.We then provide the inverse construction, starting from a 2ddimensional holomorphic integrable system W which has an endomorphism A: TW → TW satisfying the above properties and recover our initial surface S with W ≌ Sp[d].


1993 ◽  
Vol 174 (5-6) ◽  
pp. 407-410 ◽  
Author(s):  
A.E. Borovick ◽  
S.I. Kulinich ◽  
V.Yu. Popkov ◽  
Yu.M. Strzhemechny

Open Physics ◽  
2011 ◽  
Vol 9 (1) ◽  
Author(s):  
Abdul-Majid Wazwaz

AbstractIn this work, two new completely integrable extensions of the Kadomtsev-Petviashvili (eKP) equation are developed. Multiple soliton solutions and multiple singular soliton solutions are derived to demonstrate the compatibility of the extensions of the KP equation.


2021 ◽  
Vol 10 (4) ◽  
pp. 2141-2147
Author(s):  
X.F. Sharipov ◽  
B. Boymatov ◽  
N. Abriyev

Geometry of orbit is a subject of many investigations because it has important role in many branches of mathematics such as dynamical systems, control theory. In this paper it is studied geometry of orbits of conformal vector fields. It is shown that orbits of conformal vector fields are integral submanifolds of completely integrable distributions. Also for Euclidean space it is proven that if all orbits have the same dimension they are closed subsets.


Sign in / Sign up

Export Citation Format

Share Document