trace formulae
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 8)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
pp. 2150483
Author(s):  
Weifang Weng ◽  
Zhenya Yan

In this paper, the general triple-pole multi-soliton solutions are proposed for the focusing modified Korteweg–de Vries (mKdV) equation with both nonzero boundary conditions (NZBCs) and triple zeros of analytical scattering coefficients by means of the inverse scattering transform. Furthermore, we also give the corresponding trace formulae and theta conditions. Particularly, we analyze some representative reflectionless potentials containing the triple-pole multi-dark-anti-dark solitons and breathers. The idea can also be extended to the whole mKdV hierarchy (e.g. the fifth-order mKdV equation, and third-fifth-order mKdV equation) with NZBCs and triple zeros of analytical scattering coefficients. Moreover, these obtained triple-pole solutions can also be degenerated to the triple-pole soliton solutions with zero boundary conditions.


2020 ◽  
Vol 2020 (762) ◽  
pp. 195-259
Author(s):  
Michał Zydor

AbstractOn établit les formules des traces relatives de Jacques–Rallis grossières pour les groupes linéaires et unitaires. Les deux formules sont sous la forme suivante: une somme des distributions spectrales est égale à une somme des distributions géométriques. Pour établir les développements spectraux on introduit de nouveaux opérateurs de troncature et on étudie leur propriétés. Du côté géométrique, en utilisant les applications de Cayley, les développements s’obtiennent par un argument de descente vers les espaces tangents pour lesquels les formules sont connues grâce à nos travaux précédents.We establish the coarse relative trace formulae of Jacquet–Rallis for linear and unitary groups. Both formulae are of the form: a sum of spectral distributions equals a sum of geometric distributions. In order to obtain the spectral decompositions we introduce new truncation operators and we investigate their properties. On the geometric side, by means of the Cayley transform, the decompositions are derived from a procedure of descent to the tangent spaces for which the formulae are known thanks to our previous work.


2019 ◽  
Vol 2019 (5) ◽  
Author(s):  
Gleb Arutyunov ◽  
Rob Klabbers ◽  
Enrico Olivucci
Keyword(s):  

2019 ◽  
Vol 44 (2) ◽  
pp. 391-430 ◽  
Author(s):  
Pierre-Henri Chaudouard
Keyword(s):  

2018 ◽  
Vol 122 (2) ◽  
pp. 299 ◽  
Author(s):  
Julio Delgado ◽  
Michael Ruzhansky

In this paper we prove the bounded approximation property for variable exponent Lebesgue spaces, study the concept of nuclearity on such spaces and apply it to trace formulae such as the Grothendieck-Lidskii formula. We apply the obtained results to derive criteria for nuclearity and trace formulae for periodic operators on $\mathbb{R}^n$ in terms of global symbols.


Sign in / Sign up

Export Citation Format

Share Document