The null condition and global existence of nonlinear elastic waves

2020 ◽  
Vol 26 ◽  
pp. 121
Author(s):  
Dongbing Zha ◽  
Weimin Peng

For the Cauchy problem of nonlinear elastic wave equations for 3D isotropic, homogeneous and hyperelastic materials with null conditions, global existence of classical solutions with small initial data was proved in R. Agemi (Invent. Math. 142 (2000) 225–250) and T. C. Sideris (Ann. Math. 151 (2000) 849–874) independently. In this paper, we will give some remarks and an alternative proof for it. First, we give the explicit variational structure of nonlinear elastic waves. Thus we can identify whether materials satisfy the null condition by checking the stored energy function directly. Furthermore, by some careful analyses on the nonlinear structure, we show that the Helmholtz projection, which is usually considered to be ill-suited for nonlinear analysis, can be in fact used to show the global existence result. We also improve the amount of Sobolev regularity of initial data, which seems optimal in the framework of classical solutions.


2000 ◽  
Vol 142 (2) ◽  
pp. 225-250 ◽  
Author(s):  
Rentaro Agemi

2018 ◽  
Vol 30 (5) ◽  
pp. 1291-1307 ◽  
Author(s):  
Kunio Hidano ◽  
Dongbing Zha

AbstractIn this paper, we first establish a kind of weighted space-time {L^{2}} estimate, which belongs to Keel–Smith–Sogge-type estimates, for perturbed linear elastic wave equations. This estimate refines the corresponding one established by the second author [D. Zha, Space-time L^{2} estimates for elastic waves and applications, J. Differential Equations 263 2017, 4, 1947–1965] and is proved by combining the methods in the former paper, the first author, Wang and Yokoyama’s paper [K. Hidano, C. Wang and K. Yokoyama, On almost global existence and local well posedness for some 3-D quasi-linear wave equations, Adv. Differential Equations 17 2012, 3–4, 267–306] and some new ingredients. Then, together with some weighted Sobolev inequalities, this estimate is used to show a refined version of almost global existence of classical solutions for nonlinear elastic waves with small initial data. Compared with former almost global existence results for nonlinear elastic waves due to John [F. John, Almost global existence of elastic waves of finite amplitude arising from small initial disturbances, Comm. Pure Appl. Math. 41 1988, 5, 615–666] and Klainerman and Sideris [S. Klainerman and T. C. Sideris, On almost global existence for nonrelativistic wave equations in 3D, Comm. Pure Appl. Math. 49 1996, 307–321], the main innovation of our result is that it considerably improves the amount of regularity of initial data, i.e., the Sobolev regularity of initial data is assumed to be the smallest among all the admissible Sobolev spaces of integer order in the standard local existence theory. Finally, in the radially symmetric case, we establish the almost global existence of a low regularity solution for every small initial data in {H^{3}\times H^{2}}.


Sign in / Sign up

Export Citation Format

Share Document