Weakly nonlinear elastic plane waves in a cubic crystal

Author(s):  
Włodzimierz Domański

A point transformation between forms of the generalized Burgers equation (g b e) first given by Cates (1989) is investigated. Applications include generalizations of Scott’s (1981) classification of long-time behaviour for compressive wave solutions of the GBE and the equivalence of the exponential and cylindrical forms of the GBE, yielding an exact solution for the exponential GBE. Applications to nonlinear diffractive acoustics are considered by using a similarity reduction of the dissipative Zabolotskaya-Khokhlov (dzk) equation (describing the evolution of nearly plane waves in a weakly nonlinear medium with allowance for transverse variation effects) onto the GBE. The result is that waves from parabolic sources may be described by the cylindrical GBE in the case of two dimensions, and by the spherical GBE in the three-dimensional, cylindrically symmetric case. Furthermore, results on the formation of shocks and caustics in the context of the ZK equation are presented, along with an exact solution to the DZK equation. Exact solutions with caustic singularities are studied, along with a possible mechanism for their control. Finally, results on the evolution of a shock approaching a caustic are given through the identification of a series of parameter regimes dependent on the diffusivity.


1983 ◽  
Vol 21 (2) ◽  
pp. 155-163 ◽  
Author(s):  
S.K Roy Chaudhuri ◽  
Lokenath Debnath
Keyword(s):  

Author(s):  
C. M. Purushothama

AbstractThe combined effects of uniform thermal and magnetic fields on the propagation of plane waves in a homogeneous, initially unstressed, electrically conducting elastic medium have been investigated.When the magnetic field is parallel to the direction of wave propagation, the compression wave is purely thermo-elastic and the shear wave is purely magneto-elastic in nature. For a transverse magnetic field, the shear waves remain elastic whereas the compression wave assumes magneto-thermo-elastic character due to the coupling of all the three fields—mechanical, magnetic and thermal. In the general case, the waves polarized in the plane of the direction of wave propagation and the magnetic field are not only coupled but are also influenced by the thermal field, once again exhibiting the coupling of the three fields. The shear wave polarized transverse to the plane retains its magneto-elastic character.Notation.Hi = primary magnetic field components,ht = induced magnetic field components,To = initial thermal field,θ = induced thermal field,C = compression wave velocity.S = shear wave velocity,ui = displacement components,cv = specific heat at constant volume,k = thermal conductivity,η = magnetic diffusivity,μe = magnetic permeability,λ, μ = Lamé's constants,β = ratio of coefficient of volume expansion to isothermal compressibility.


Sign in / Sign up

Export Citation Format

Share Document