guided wave
Recently Published Documents


TOTAL DOCUMENTS

3705
(FIVE YEARS 692)

H-INDEX

76
(FIVE YEARS 9)

2022 ◽  
Vol 169 ◽  
pp. 108761
Author(s):  
Xiaocen Wang ◽  
Min Lin ◽  
Jian Li ◽  
Junkai Tong ◽  
Xinjing Huang ◽  
...  

Ultrasonics ◽  
2022 ◽  
Vol 119 ◽  
pp. 106583
Author(s):  
Adli Hasan Abu Bakar ◽  
Mathew Legg ◽  
Daniel Konings ◽  
Fakhrul Alam

2022 ◽  
Vol 12 (2) ◽  
pp. 849
Author(s):  
Rymantas Jonas Kazys ◽  
Justina Sestoke ◽  
Egidijus Zukauskas

Ultrasonic-guided waves are widely used for the non-destructive testing and material characterization of plates and thin films. In the case of thin plastic polyvinyl chloride (PVC), films up to 3.2 MHz with only two Lamb wave modes, antisymmetrical A0 and symmetrical S0, may propagate. At frequencies lower that 240 kHz, the velocity of the A0 mode becomes slower than the ultrasonic velocity in air which makes excitation and reception of such mode complicated. For excitation of both modes, we propose instead a single air-coupled ultrasonic transducer to use linear air-coupled arrays, which can be electronically readjusted to optimally excite and receive the A0 and S0 guided wave modes. The objective of this article was the numerical investigation of feasibility to excite different types of ultrasonic-guided waves, such as S0 and A0 modes in thin plastic films with the same electronically readjusted linear phased array. Three-dimensional and two-dimensional simulations of A0 and S0 Lamb wave modes using a single ultrasonic transducer and a linear phased array were performed. The obtained results clearly demonstrate feasibility to excite efficiently different guided wave modes in thin plastic films with readjusted phased array.


Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 92
Author(s):  
Wencai Liu ◽  
Jianchun Fan ◽  
Jin Yang

In terms of the structural health inspection of storage tanks by ultrasonic guided wave technology, many scholars are currently focusing on the tanks’ floor and walls, while little research has been conducted on storage tank roofs. However, the roof of a storage tank is prone to corrosion because of its complex structure and unique working environment. For this purpose, this paper proposes a reflection/transmission signal amplitude ratio (RTAR) coefficient method for corrosion depth assessment. We studied the relationship between the RTAR coefficient, the corrosion depth, and the guided wave frequency to establish a depth assessment model. More importantly, unlike the traditional reflection coefficient method, the characteristics of guided wave signals, including the propagation and attenuation, are introduced in this model for accurate assessment. To eliminate the interference of residual vibration and improve the detection accuracy of defects, we built a corrosion detection system by using piezoelectric sensors and carried out field tests to verify the performance of the proposed method. We demonstrate that corrosion defects with a minimum depth of 0.2 mm can be quantitatively evaluated.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 486
Author(s):  
Carlos-Omar Rasgado-Moreno ◽  
Marek Rist ◽  
Raul Land ◽  
Madis Ratassepp

The sections of pipe bends are hot spots for wall thinning due to accelerated corrosion by fluid flow. Conventionally, the thickness of a bend wall is evaluated by local point-by-point ultrasonic measurement, which is slow and costly. Guided wave tomography is an attractive method that enables the monitoring of a whole bend area by processing the waves excited and received by transducer arrays. The main challenge associated with the tomography of the bend is the development of an appropriate forward model, which should simply and efficiently handle the wave propagation in a complex bend model. In this study, we developed a two-dimensional (2D) acoustic forward model to replace the complex three-dimensional (3D) bend domain with a rectangular domain that is made artificially anisotropic by using Thomsen parameters. Thomsen parameters allow the consideration of the directional dependence of the velocity of the wave in the model. Good agreement was found between predictions and experiments performed on a 220 mm diameter (d) pipe with 1.5d bend radius, including the wave-field focusing effect and the steering effect of scattered wave-fields from defects.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 406
Author(s):  
Christopher Schnur ◽  
Payman Goodarzi ◽  
Yevgeniya Lugovtsova ◽  
Jannis Bulling ◽  
Jens Prager ◽  
...  

Data-driven analysis for damage assessment has a large potential in structural health monitoring (SHM) systems, where sensors are permanently attached to the structure, enabling continuous and frequent measurements. In this contribution, we propose a machine learning (ML) approach for automated damage detection, based on an ML toolbox for industrial condition monitoring. The toolbox combines multiple complementary algorithms for feature extraction and selection and automatically chooses the best combination of methods for the dataset at hand. Here, this toolbox is applied to a guided wave-based SHM dataset for varying temperatures and damage locations, which is freely available on the Open Guided Waves platform. A classification rate of 96.2% is achieved, demonstrating reliable and automated damage detection. Moreover, the ability of the ML model to identify a damaged structure at untrained damage locations and temperatures is demonstrated.


Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 168
Author(s):  
Leiming Wu ◽  
Kai Che ◽  
Yuanjiang Xiang ◽  
Yuwen Qin

A guided−wave long−range surface plasmon resonance (GW−LRSPR) sensor was proposed in this investigation. In the proposed sensor, high−refractive−index (RI) dielectric films (i.e., CH3NH3PbBr3 perovskite, silicon) served as the guided−wave (GW) layer, which was combined with the long−range surface plasmon resonance (LRSPR) structure to form the GW−LRSPR sensing structure. The theoretical results based on the transfer matrix method (TMM) demonstrated that the LRSPR signal was enhanced by the additional high#x2212;RI GW layer, which was called the GW−LRSPR signal. The achieved GW−LRSPR signal had a strong ability to perceive the analyte. By optimizing the low− and high−RI dielectrics in the GW−LRSPR sensing structure, we obtained the highest sensitivity (S) of 1340.4 RIU−1 based on a CH3NH3PbBr3 GW layer, and the corresponding figure of merit (FOM) was 8.16 × 104 RIU−1 deg−1. Compared with the conventional LRSPR sensor (S = 688.9 RIU−1), the sensitivity of this new type of sensor was improved by nearly 94%.


Sign in / Sign up

Export Citation Format

Share Document