On $t$-adic Littlewood conjecture for certain infinite products

Author(s):  
D. Badziahin
2015 ◽  
Vol 52 (3) ◽  
pp. 350-370
Author(s):  
Jaroslav Hančl ◽  
Katarína Korčeková ◽  
Lukáš Novotný

We introduce the two new concepts, productly linearly independent sequences and productly irrational sequences. Then we prove a criterion for which certain infinite sequences of rational numbers are productly linearly independent. As a consequence we obtain a criterion for the irrationality of infinite products and a criterion for a sequence to be productly irrational.


2010 ◽  
Vol 3 (2) ◽  
pp. 191-196
Author(s):  
Clarice Ferolito

2013 ◽  
Vol 86 (1) ◽  
pp. 15-25 ◽  
Author(s):  
Samuel G. Moreno ◽  
Esther M. García
Keyword(s):  

1917 ◽  
Vol 24 (5) ◽  
pp. 246 ◽  
Author(s):  
M. B. Porter
Keyword(s):  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mohammad Idris Qureshi ◽  
Mahvish Ali ◽  
Dilshad Ahamad ◽  
Saima Jabee

1998 ◽  
Vol 21 (3) ◽  
pp. 581-586
Author(s):  
Geoffrey B. Campbell

We obtain infinite products related to the concept of visible from the origin point vectors. Among these is∏k=3∞(1−Z)φ,(k)/k=11−Zexp(Z32(1−Z)2−12Z−12Z(1−Z)),  |Z|<1,in whichφ3(k)denotes for fixedk, the number of positive integer solutions of(a,b,k)=1wherea<b<k, assuming(a,b,k)is thegcd(a,b,k).


1967 ◽  
Vol 15 (4) ◽  
pp. 871-873 ◽  
Author(s):  
N. J. Pullman
Keyword(s):  

1992 ◽  
Vol 161 ◽  
pp. 227-263 ◽  
Author(s):  
Ingrid Daubechies ◽  
Jeffrey C. Lagarias
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document