scholarly journals Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition

2007 ◽  
Vol 76 (259) ◽  
pp. 1093-1118 ◽  
Author(s):  
Xiaobing Feng ◽  
Ohannes A. Karakashian
Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. T101-T121 ◽  
Author(s):  
Xijun He ◽  
Dinghui Yang ◽  
Xueyuan Huang ◽  
Xiao Ma

The dispersive and dissipative properties of numerical methods are important for numerical modeling. We have evaluated a numerical dispersion-dissipation analysis for two discontinuous Galerkin methods (DGMs) — the flux-based DGM (FDGM) and the interior penalty DGM (IP DGM) for scalar wave equation. The semidiscrete analysis based on the plane-wave analysis is conducted for quadrilateral and triangular elements. Two kinds of triangular elements are taken into account. The fully discrete analysis for each method is conducted by incorporating a classic third-order total variation diminishing (TVD) Runge-Kutta (RK) time discretization. Our results indicate that FDGM produces smaller numerical dispersion than IP DGM, but it introduces more numerical dissipation. Notably, the two methods have different local convergence orders for numerical dispersion and dissipation. The anisotropy properties for different mesh types can also be identified. Several numerical experiments are carried out that verify some theoretical findings. The experiments exhibit that the numerical error introduced by FDGM is less than that introduced by IP DGM whereas the storage and calculation time of FDGM are greater than that of IP DGM. Overall, our work indicates that when both methods adopt third TVD RK time discretization, the computational efficiency of FDGM is slightly larger than IP DGM.


2015 ◽  
Vol 7 (4) ◽  
pp. 510-527 ◽  
Author(s):  
Leilei Wei ◽  
Yinnian He ◽  
Xindong Zhang

AbstractIn this paper, we consider a fully discrete local discontinuous Galerkin (LDG) finite element method for a time-fractional Korteweg-de Vries (KdV) equation. The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. We show that our scheme is unconditionally stable and convergent through analysis. Numerical examples are shown to illustrate the efficiency and accuracy of our scheme.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Fengna Yan ◽  
Yan Xu

Abstract In this paper, we mainly study the error analysis of an unconditionally energy stable local discontinuous Galerkin (LDG) scheme for the Cahn–Hilliard equation with concentration-dependent mobility. The time discretization is based on the invariant energy quadratization (IEQ) method. The fully discrete scheme leads to a linear algebraic system to solve at each time step. The main difficulty in the error estimates is the lack of control on some jump terms at cell boundaries in the LDG discretization. Special treatments are needed for the initial condition and the non-constant mobility term of the Cahn–Hilliard equation. For the analysis of the non-constant mobility term, we take full advantage of the semi-implicit time-discrete method and bound some numerical variables in L ∞ L^{\infty} -norm by the mathematical induction method. The optimal error results are obtained for the fully discrete scheme.


2012 ◽  
Vol 17 (4) ◽  
pp. 558-570 ◽  
Author(s):  
Zongxiu Ren ◽  
Leilei Wei ◽  
Yinnian He ◽  
Shaoli Wang

In this paper we develop and analyze an implicit fully discrete local discontinuous Galerkin (LDG) finite element method for a time-fractional Zakharov–Kuznetsov equation. The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. We show that our scheme is unconditional stable and L 2 error estimate for the linear case with the convergence rate through analysis.


Sign in / Sign up

Export Citation Format

Share Document