interior penalty
Recently Published Documents


TOTAL DOCUMENTS

267
(FIVE YEARS 42)

H-INDEX

31
(FIVE YEARS 2)

Author(s):  
Poorvi Shukla ◽  
J. J. W. van der Vegt

AbstractA new higher-order accurate space-time discontinuous Galerkin (DG) method using the interior penalty flux and discontinuous basis functions, both in space and in time, is presented and fully analyzed for the second-order scalar wave equation. Special attention is given to the definition of the numerical fluxes since they are crucial for the stability and accuracy of the space-time DG method. The theoretical analysis shows that the DG discretization is stable and converges in a DG-norm on general unstructured and locally refined meshes, including local refinement in time. The space-time interior penalty DG discretization does not have a CFL-type restriction for stability. Optimal order of accuracy is obtained in the DG-norm if the mesh size h and the time step $$\Delta t$$ Δ t satisfy $$h\cong C\Delta t$$ h ≅ C Δ t , with C a positive constant. The optimal order of accuracy of the space-time DG discretization in the DG-norm is confirmed by calculations on several model problems. These calculations also show that for pth-order tensor product basis functions the convergence rate in the $$L^\infty$$ L ∞ and $$L^2$$ L 2 -norms is order $$p+1$$ p + 1 for polynomial orders $$p=1$$ p = 1 and $$p=3$$ p = 3 and order p for polynomial order $$p=2$$ p = 2 .


2021 ◽  
Vol 36 (6) ◽  
pp. 313-336
Author(s):  
Ronald H. W. Hoppe ◽  
Youri Iliash

Abstract We are concerned with an Interior Penalty Discontinuous Galerkin (IPDG) approximation of the p-Laplace equation and an equilibrated a posteriori error estimator. The IPDG method can be derived from a discretization of the associated minimization problem involving appropriately defined reconstruction operators. The equilibrated a posteriori error estimator provides an upper bound for the discretization error in the broken W 1,p norm and relies on the construction of an equilibrated flux in terms of a numerical flux function associated with the mixed formulation of the IPDG approximation. The relationship with a residual-type a posteriori error estimator is established as well. Numerical results illustrate the performance of both estimators.


2021 ◽  
Vol 3 ◽  
Author(s):  
Grégory Etangsale ◽  
Vincent Fontaine ◽  
Nalitiana Rajaonison

The present paper discusses families of Interior Penalty Discontinuous Galerkin (IP) methods for solving heterogeneous and anisotropic diffusion problems. Specifically, we focus on distinctive schemes, namely the Hybridized-, Embedded-, and Weighted-IP schemes, leading to final matrixes of different sizes and sparsities. Both the Hybridized- and Embedded-IP schemes are eligible for static condensation, and their degrees of freedom are distributed on the mesh skeleton. In contrast, the unknowns are located inside the mesh elements for the Weighted-IP variant. For a given mesh, it is well-known that the number of degrees of freedom related to the standard Discontinuous Galerkin methods increases more rapidly than those of the skeletal approaches (Hybridized- and Embedded-IP). We then quantify the impact of the static condensation procedure on the computational performances of the different IP classes in terms of robustness, accuracy, and CPU time. To this aim, numerical experiments are investigated by considering strong heterogeneities and anisotropies. We analyze the fixed error tolerance versus the run time and mesh size to guide our performance criterion. We also outlined some relationships between these Interior Penalty schemes. Eventually, we confirm the superiority of the Hybridized- and Embedded-IP schemes, regardless of the mesh, the polynomial degree, and the physical properties (homogeneous, heterogeneous, and/or anisotropic).


Author(s):  
Susanne C. Brenner ◽  
Li-yeng Sung ◽  
Zhiyu Tan ◽  
Hongchao Zhang

AbstractWe design and analyze a $$C^0$$ C 0 interior penalty method for the approximation of classical solutions of the Dirichlet boundary value problem of the Monge–Ampère equation on convex polygonal domains. The method is based on an enhanced cubic Lagrange finite element that enables the enforcement of the convexity of the approximate solutions. Numerical results that corroborate the a priori and a posteriori error estimates are presented. It is also observed from numerical experiments that this method can capture certain weak solutions.


2021 ◽  
Vol 1818 (1) ◽  
pp. 012146
Author(s):  
Ahmed Kasim Salman ◽  
Ahmed Sabah Al-Jilawi

Sign in / Sign up

Export Citation Format

Share Document