scholarly journals Sp2 Localizes to Subnuclear Foci Associated with the Nuclear Matrix

2006 ◽  
Vol 17 (4) ◽  
pp. 1711-1722 ◽  
Author(s):  
K. Scott Moorefield ◽  
Haifeng Yin ◽  
Teresa D. Nichols ◽  
Christopher Cathcart ◽  
Steven O. Simmons ◽  
...  

We have reported that extracts prepared from many human and mouse cell lines show little or no Sp2 DNA-binding activity and that Sp2 has little or no capacity to stimulate transcription of promoters that are activated by Sp1, Sp3, and Sp4. Using an array of chimeric Sp1/Sp2 proteins we showed further that Sp2 DNA-binding activity and trans-activation are each negatively regulated in mammalian cells. As part of an ongoing effort to study Sp2 function and regulation we characterized its subcellular localization in comparison with other Sp-family members in fixed and live cells. We report that 1) Sp2 localizes largely within subnuclear foci associated with the nuclear matrix, and 2) these foci are distinct from promyelocytic oncogenic domains and appear to be stable during an 18-h time course of observation. Deletion analyses identified a 37 amino acid sequence spanning the first zinc-“finger” that is sufficient to direct nuclear matrix association, and this region also encodes a bipartite nuclear localization sequence. A second nuclear matrix targeting sequence is encoded within the Sp2 trans-activation domain. We conclude that Sp2 preferentially associates with the nuclear matrix and speculate that this subcellular localization plays an important role in the regulation of Sp2 function.

2004 ◽  
Vol 279 (44) ◽  
pp. 45887-45896 ◽  
Author(s):  
Mark J. Demma ◽  
Serena Wong ◽  
Eugene Maxwell ◽  
Bimalendu Dasmahapatra

The p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 50% of all cancers and are indicative of highly aggressive cancers that are hard to treat. Recently, there has been a high degree of interest in therapeutic approaches to restore growth suppression functions to mutant p53. Several compounds have been reported to restore wild type function to mutant p53. One such compound, CP-31398, has been shown effectivein vivo, but questions have arisen to whether it actually affects p53. Here we show that mutant p53, isolated from cells treated with CP-31398, is capable of binding to p53 response elementsin vitro. We also show the compound restores DNA-binding activity to mutant p53 in cells as determined by a chromatin immunoprecipitation assay. In addition, using purified p53 core domain from two different hotspot mutants (R273H and R249S), we show that CP-31398 can restore DNA-binding activity in a dose-dependent manner. Using a quantitative DNA binding assay, we also show that CP-31398 increases significantly the amount of mutant p53 that binds to cognate DNA (Bmax) and its affinity (Kd) for DNA. The compound, however, does not affect the affinity (Kdvalue) of wild type p53 for DNA and only increasesBmaxslightly. In a similar assay PRIMA1 does not have any effect on p53 core DNA-binding activity. We also show that CP-31398 had no effect on the DNA-binding activity of p53 homologs p63 and p73.


1996 ◽  
Vol 271 (4) ◽  
pp. C1172-C1180 ◽  
Author(s):  
B. H. Jiang ◽  
G. L. Semenza ◽  
C. Bauer ◽  
H. H. Marti

Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix protein implicated in the transcriptional activation of genes encoding erythropoietin, glycolytic enzymes, and vascular endothelial growth factor in hypoxic mammalian cells. In this study, we have quantitated HIF-1 DNA-binding activity and protein levels of the HIF-1 alpha and HIF-1 beta subunits in human HeLa cells exposed to O2 concentrations ranging from 0 to 20% in the absence or presence of 1 mM KCN to inhibit oxidative phosphorylation and cellular O2 consumption. HIF-1 DNA-binding activity, HIF-1 alpha protein and HIF-1 beta protein each increased exponentially as cells were subjected to decreasing O2 concentrations, with a half maximal response between 1.5 and 2% O2 and a maximal response at 0.5% O2, both in the presence and absence of KCN. The HIF-1 response was greatest over O2 concentrations associated with ischemic/hypoxic events in vivo. These results provide evidence for the involvement of HIF-1 in O2 homeostasis and represent a functional characterization of the putative O2 sensor that initiates hypoxia signal transduction leading to HIF-1 expression.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2437-2437
Author(s):  
Ying Cai ◽  
Lalitha Nagarajan ◽  
Stephen J. Brandt

Abstract The multifunctional LIM domain-binding protein Ldb1 is important in multiple developmental programs, including hematopoiesis. An evolutionarily conserved family of proteins with single-stranded DNA-binding activity, the SSBPs, has been shown to act as Ldb1 partners and augment its biological actions. We recently established that Ssbp2 and Ssbp3 were components of an E-box-GATA DNA-binding complex in murine erythroid progenitors containing the LIM-only protein Lmo2 and transcription factors Tal1, E2A, and Gata1 and showed these SSBPs stimulated E box-GATA DNA-binding activity and inhibited Ldb1 ubiquitination and subsequent proteasomal degradation (Genes & Dev.21:942–955, 2007). As its SSBP interaction domain (Ldb1/Chip conserved domain or LCCD) is adjacent to Ldb1’s N-terminal dimerization domain (DD), we sought to determine whether SSBP binding affected Ldb1 dimerization. To investigate, the Ldb1 coding region was fused to the DNA-binding domain of the yeast transcription factor GAL4 (GAL4DBD) and in a second construct to the activation domain of herpesvirus VP16 (VP16AD). These fusion proteins were then expressed in mammalian cells with a luciferase reporter linked to a promoter with iterated GAL4 binding sites. Luciferase activity became detectable with coexpression of the VP16AD-Ldb1 and GAL4DBD-Ldb1 fusions, presumably from Ldb1 dimerization, which increased markedly with simultaneous expression of SSBP2. In contrast, SSBP2 (ΔLUFS) and Ldb1 (ΔLCCD) mutants incapable of interacting with Ldb1 and SSBPs, respectively, were inactive, suggesting that SSBP2 augmentation of Ldb1 dimerization involved direct protein-protein interactions. To exclude an effect of SSBP2 on turnover of Ldb1 fusion proteins, radiolabeled full-length Ldb1 and SSBP3 were prepared by in vitro transcription/translation, mixed, and subjected to chemical crosslinking. Addition of the crosslinker bis(sulfosuccinimidyl)-suberate (BS3) to Ldb1, but not SSBP3, led to the appearance of a radiolabeled protein with mobility in denaturing polyacrylamide gels approximately twice that of Ldb1, consistent with an Ldb1 homodimer. When SSBP3 and Ldb1 were mixed together and crosslinked, a dose-related increase was noted in a more retarded species predicted to contain two molecules each of Ldb1 and SSBP3, together with a decrease in monomeric Ldb1. Finally, two well-characterized dimerization-defective Ldb1 mutants, Ldb1(200–375) and Ldb1(50–375), failed to support the formation of the higher molecular weight species or to homodimerize. Thus, the SSBPs promoted assembly of ternary complexes incorporating both SSBP and Ldb1 in a manner dependent on Ldb1 dimerization. The failure to observe Ldb1-SSBP heterodimers in cross-linking experiments suggests, further, that the SSBPs interacted with preformed Ldb1 dimers. In summary, either through an allosteric effect on Ldb1’s DD or by altering the equilibrium between monomeric and dimeric species, the SSBPs promote Ldb1 oligomerization. Together with inhibition of Ldb1 ubiquitination and turnover, this would serve to augment Ldb1 function.


Author(s):  
Nili Feuerstein ◽  
James J. Mond ◽  
Paul R. Kinchington ◽  
Robert Hickey ◽  
Marja-Liisa Karjalainen Lindsberg ◽  
...  

2004 ◽  
Vol 279 (14) ◽  
pp. 13911-13924 ◽  
Author(s):  
K. Scott Moorefield ◽  
Sarah J. Fry ◽  
Jonathan M. Horowitz

1996 ◽  
Vol 16 (11) ◽  
pp. 5974-5984 ◽  
Author(s):  
Z L Chu ◽  
T A McKinsey ◽  
L Liu ◽  
X Qi ◽  
D W Ballard

The product of the c-rel proto-oncogene (c-Rel) belongs to the NF-kappaB/Rel family of polypeptides and has been implicated in the transcriptional control of cell proliferation and immune function. In human T lymphocytes, c-Rel is sequestered in the cytoplasmic compartment by constitutively phosphorylated inhibitors, including I(kappa)B(alpha) and I(kappa)B(beta). Studies with bacterially expressed forms of these inhibitory proteins revealed that unphosphorylated I(kappa)B(alpha) but not I(kappa)B(beta) assembles with c-Rel and inhibits its DNA binding activity. Furthermore, latent I(kappa)B(beta)-c-Rel complexes derived from mammalian cells were sensitive to phosphatase treatment, whereas I(kappa)B(alpha)-c-Rel complexes were resistant. We have identified a constitutive protein kinase in unstimulated T cells that associates with and phosphorylates I(kappa)B(beta) in vitro. The substrate specificity, electrophoretic mobility, and antigenic properties of this I(kappa)B(beta)-associated kinase (BAK) suggest identity with casein kinase II (CKII), an enzyme known to mediate basal phosphorylation of I(kappa)B(alpha). Phosphorylation of recombinant I(kappa)B(beta) by either BAK or CKII restored the capacity of this inhibitor to antagonize the DNA binding activity of c-Rel. Peptide mapping and mutational analyses localized the bulk of the basal phosphorylation sites in I(kappa)B(beta) to the C-terminal PEST domain, which contains two potential acceptors for CKII-mediated phosphoryl group transfer (Ser-313 and Ser-315). Point mutations introduced into the full-length inhibitor at Ser-313 and Ser-315 led to a significant reduction in the phosphorylation of I(kappa)B(beta) and severely impaired its c-Rel inhibitory function in vivo. Taken together, these findings strongly suggest that basal phosphorylation of the PEST domain of I(kappa)B(beta) at consensus CKII sites is required for the efficient formation of latent I(kappa)B(beta)-c-Rel complexes.


1992 ◽  
Vol 12 (10) ◽  
pp. 4742-4750
Author(s):  
J Trejo ◽  
J C Chambard ◽  
M Karin ◽  
J H Brown

Activation of either muscarinic cholinergic or thrombin receptors increases phosphoinositide turnover, Ca2+ mobilization, and redistribution of protein kinase C and induces rapid transient increases in c-fos mRNA and c-jun mRNA in 1321N1 cells. To determine whether the increases in c-fos and c-jun mRNA induced by carbachol and thrombin are sufficient to stimulate AP-1-mediated transactivation, 1321N1 cells were transfected with a reporter carrying two copies of the tetradecanoyl phorbol acetate response element and the firefly luciferase gene. Thrombin was significantly more effective than carbachol at stimulating AP-1-mediated transactivation. To identify the factors underlying the difference in AP-1 activity induced by carbachol and thrombin, members of the fos and jun families which encode components of AP-1 were examined. Carbachol and thrombin have similar effects on expression of c-fos, fosB, fra-2, junB, and junD, both acutely and over a 24-h time course. However, whereas carbachol leads only to transient induction of c-jun (maximal at 0.5 h), thrombin induces a biphasic increase in c-jun mRNA--an initial peak at 0.5 h and a second, more-prolonged increase at 12 h. Thrombin but not carbachol also induces a late increase in fra-1 mRNA, which peaks at 12 h. The secondary increase in c-jun mRNA is associated with marked increases in c-Jun protein levels and AP-1 DNA-binding activity. The late induction of c-jun and fra-1 mRNA can be prevented by adding the antagonist hirudin 30 min after thrombin, which results in loss of thrombin-stimulated increases in c-Jun protein, AP-1 DNA-binding activity, and AP-1-mediated transactivation. These findings suggest that rapid and transient conduction of c-fos and c-jun mRNA is insufficient to induce prominent changes in gene transcription, while the sustained increase in c-jun mRNA and perhaps the late induction of fra-1 mRNA are required for generation of AP-1 DNA-binding activity and transactivation through AP-1.


1990 ◽  
Vol 10 (12) ◽  
pp. 6225-6235
Author(s):  
L Dailey ◽  
M S Caddle ◽  
N Heintz ◽  
N H Heintz

Replication of the Chinese hamster dihydrofolate reductase gene (dhfr) initiates near a fragment of stably bent DNA that binds multiple cellular factors. Investigation of protein interactions with the dhfr bent DNA sequences revealed a novel nuclear protein that also binds to domain B of the yeast origin of replication, the autonomously replicating sequence ARS1. The origin-specific DNA-binding activity was purified 9,000-fold from HeLa cell nuclear extract in five chromatographic steps. Protein-DNA cross-linking experiments showed that a 60-kDa polypeptide, which we call RIP60, contained the origin-specific DNA-binding activity. Oligonucleotide displacement assays showed that highly purified fractions of RIP60 also contained an ATP-dependent DNA helicase activity. Covalent radiolabeling with ATP indicated that the DNA helicase activity resided in a 100-kDa polypeptide, RIP100. The cofractionation of an ATP-dependent DNA helicase with an origin-specific DNA-binding activity suggests that RIP60 and RIP100 may be involved in initiation of chromosomal DNA synthesis in mammalian cells.


1996 ◽  
Vol 183 (5) ◽  
pp. 2373-2378 ◽  
Author(s):  
P W Noble ◽  
C M McKee ◽  
M Cowman ◽  
H S Shin

Macrophages play an important role in the acute tissue inflammatory response through the release of cytokines and growth factors in response to stimuli such as lipopolysaccharide (LPS). Macrophage inflammatory effector functions are also influenced by interactions with the extracellular matrix (ECM). Such macrophage-ECM interactions may be important in regulating chronic inflammatory responses. Recent evidence has suggested that hyaluronan (HA), a glycosaminoglycan (GAG) component of ECM can induce inflammatory gene expression in murine macrophages. HA exists in its native form as a large polymer, but is found as smaller fragments under inflammatory conditions. The NF-kappa B/I-kappa B transcriptional regulatory system has been shown to be a critical component of the host inflammatory response. We examined the effects of high molecular weight HA and lower molecular weight HA fragments on NF-kappa B activation in mouse macrophages. Only the smaller HA fragments were found to activate NF-kappa B DNA binding activity. After HA stimulation, I-kappa B alpha mRNA was induced and I-kappa B alpha protein levels, which initially decreased, were restored. The induction of I-kappa Balpha expression was not observed for other GAGs. The time course of I-kappa B alpha protein regeneration in response to HA fragments was consistent with an autoregulatory mechanism. In support of this mechanism, in vitro translated murine I-kappa B alpha inhibited HA fragment-induced NF-kappa B DNA binding activity. The NF-kappa B DNA binding complex in HA-stimulated extracts was found to contain p50 and p65 subunits. Activation of the NF-kappa B/I-kappa B system in macrophages by ECM fragments may be an important mechanism for propagating the tissue inflammatory response.


Sign in / Sign up

Export Citation Format

Share Document