scholarly journals Use of the Novel Plk1 Inhibitor ZK-Thiazolidinone to Elucidate Functions of Plk1 in Early and Late Stages of Mitosis

2007 ◽  
Vol 18 (10) ◽  
pp. 4024-4036 ◽  
Author(s):  
Anna Santamaria ◽  
Rüdiger Neef ◽  
Uwe Eberspächer ◽  
Knut Eis ◽  
Manfred Husemann ◽  
...  

Polo-like kinase 1 (Plk1) is a key regulator of mitotic progression and cell division in eukaryotes. It is highly expressed in tumor cells and considered a potential target for cancer therapy. Here, we report the discovery and application of a novel potent small-molecule inhibitor of mammalian Plk1, ZK-Thiazolidinone (TAL). We have extensively characterized TAL in vitro and addressed TAL specificity within cells by studying Plk1 functions in sister chromatid separation, centrosome maturation, and spindle assembly. Moreover, we have used TAL for a detailed analysis of Plk1 in relation to PICH and PRC1, two prominent interaction partners implicated in spindle assembly checkpoint function and cytokinesis, respectively. Specifically, we show that Plk1, when inactivated by TAL, spreads over the arms of chromosomes, resembling the localization of its binding partner PICH, and that both proteins are mutually dependent on each other for correct localization. Finally, we show that Plk1 activity is essential for cleavage furrow formation and ingression, leading to successful cytokinesis.

2019 ◽  
Author(s):  
Lindsey A Allan ◽  
Magda Reis ◽  
Yahui Liu ◽  
Pim Huis in ’t Veld ◽  
Geert JPL Kops ◽  
...  

ABSTRACTThe Cyclin B:CDK1 kinase complex is the master regulator of mitosis that phosphorylates hundreds of proteins to coordinate mitotic progression. We show here that, in addition to these kinase functions, Cyclin B also scaffolds a localised signalling pathway to help preserve genome stability. Cyclin B1 localises to an expanded region of the outer kinetochore, known as the corona, where it scaffolds the spindle assembly checkpoint (SAC) machinery by binding directly to MAD1. In vitro reconstitutions map the key binding interface to a few acidic residues in the N-terminus of MAD1, and point mutations in this region remove corona MAD1 and weaken the SAC. Therefore, Cyclin B1 is the long-sought-after scaffold that links MAD1 to the corona and this specific pool of MAD1 is needed to generate a robust SAC response. Robustness, in this context, arises because Cyclin B1-MAD1 localisation becomes MPS1-independent after the corona has been established. We demonstrate that this allows corona-MAD1 to persist at kinetochores when MPS1 activity falls, ensuring that it can still be phosphorylated on a key C-terminal catalytic site by MPS1. Therefore, this study explains how corona MAD1 generates a robust SAC signal and why stripping of this pool by dynein is essential for SAC silencing. It also reveals that the key mitotic kinase, Cyclin B1-Cdk1, scaffolds the pathway that inhibits its own degradation.


2009 ◽  
Vol 20 (1) ◽  
pp. 410-418 ◽  
Author(s):  
Ulf R. Klein ◽  
Markus Haindl ◽  
Erich A. Nigg ◽  
Stefan Muller

The ubiquitin-like SUMO system controls cellular key functions, and several lines of evidence point to a critical role of SUMO for mitotic progression. However, in mammalian cells mitotic substrates of sumoylation and the regulatory components involved are not well defined. Here, we identify Borealin, a component of the chromosomal passenger complex (CPC), as a mitotic target of SUMO. The CPC, which additionally comprises INCENP, Survivin, and Aurora B, regulates key mitotic events, including chromosome congression, the spindle assembly checkpoint, and cytokinesis. We show that Borealin is preferentially modified by SUMO2/3 and demonstrate that the modification is dynamically regulated during mitotic progression, peaking in early mitosis. Intriguingly, the SUMO ligase RanBP2 interacts with the CPC, stimulates SUMO modification of Borealin in vitro, and is required for its modification in vivo. Moreover, the SUMO isopeptidase SENP3 is a specific interaction partner of Borealin and catalyzes the removal of SUMO2/3 from Borealin. These data thus delineate a mitotic SUMO2/3 conjugation–deconjugation cycle of Borealin and further assign a regulatory function of RanBP2 and SENP3 in the mitotic SUMO pathway.


2019 ◽  
Author(s):  
Hanna L. Zieger ◽  
Stella-Amrei Kunde ◽  
Nils Rademacher ◽  
Bettina Schmerl ◽  
Sarah A. Shoichet

AbstractScaffold proteins are responsible for structural organisation within cells; they form complexes with other proteins to facilitate signalling pathways and catalytic reactions. The scaffold protein connector enhancer of kinase suppressor of Ras 2 (CNK2) is predominantly expressed in neural tissues and was recently implicated in X-linked intellectual disability (ID). We have investigated the role of CNK2 in neurons in order to contribute to our understanding of how CNK2 alterations might cause developmental defects, and we have elucidated a functional role for CNK2 in the molecular processes that govern morphology of the postsynaptic density (PSD). We have also identified novel CNK2 interaction partners and explored their functional interdependency with CNK2. We focussed on the novel interaction partner TRAF2- and NCK-interacting kinase TNIK, which is also associated with ID. Both CNK2 and TNIK are expressed in neuronal dendrites and concentrated in dendritic spines, and staining with synaptic markers indicates a clear postsynaptic localisation. Importantly, our data highlight that CNK2 plays a role in directing TNIK subcellular localisation, and in neurons, CNK2 participates in ensuring that this multifunctional kinase is present at desirable levels at synaptic sites. In summary, our data indicate that CNK2 expression is critical for modulating PSD morphology; moreover, our study highlights a role for CNK2 in directing the localisation of regulatory proteins within the cell. Importantly, we describe a novel link between CNK2 and the regulatory kinase TNIK, and provide evidence supporting the idea that these proteins play complementary roles in the regulation of dendritic spine growth and maintenance.


2005 ◽  
Vol 25 (5) ◽  
pp. 2031-2044 ◽  
Author(s):  
Barbara C. M. van de Weerdt ◽  
Marcel A. T. M. van Vugt ◽  
Catherine Lindon ◽  
Jos J. W. Kauw ◽  
Marieke J. Rozendaal ◽  
...  

ABSTRACT Polo-like kinase 1 (Plk1) plays a role in numerous events in mitosis, but how the multiple functions of Plk1 are separated is poorly understood. We studied regulation of Plk1 through two putative phosphorylation residues, Ser-137 and Thr-210. Using phospho-specific antibodies, we found that Thr-210 phosphorylation precedes Ser-137 phosphorylation in vivo, the latter occurring specifically in late mitosis. We show that expression of two activating mutants of these residues, S137D and T210D, results in distinct mitotic phenotypes. Whereas expression of both phospho-mimicking mutants as well as of the double mutant leads to accelerated mitotic entry, further progression through mitosis is dramatically different: the T210D mutant causes a spindle assembly checkpoint-dependent delay, whereas the expression of the S137D mutant or the double mutant results in untimely activation of the anaphase-promoting complex/cyclosome (APC/C) and frequent mitotic catastrophe. Using nonphosphorylatable Plk1-S137A and Plk1-T210A mutants, we show that both sites contribute to proper mitotic progression. Based on these observations, we propose that Plk1 function is altered at different stages of mitosis through consecutive posttranslational events, e.g., at Ser-137 and Thr-210. Furthermore, our data show that uncontrolled Plk1 activation can uncouple APC/C activity from spindle assembly checkpoint control.


2012 ◽  
Vol 199 (2) ◽  
pp. 269-284 ◽  
Author(s):  
Anna De Antoni ◽  
Stefano Maffini ◽  
Stefan Knapp ◽  
Andrea Musacchio ◽  
Stefano Santaguida

By phosphorylating Thr3 of histone H3, Haspin promotes centromeric recruitment of the chromosome passenger complex (CPC) during mitosis. Aurora B kinase, a CPC subunit, sustains chromosome bi-orientation and the spindle assembly checkpoint (SAC). Here, we characterize the small molecule 5-iodotubercidin (5-ITu) as a potent Haspin inhibitor. In vitro, 5-ITu potently inhibited Haspin but not Aurora B. Consistently, 5-ITu counteracted the centromeric localization of the CPC without affecting the bulk of Aurora B activity in HeLa cells. Mislocalization of Aurora B correlated with dephosphorylation of CENP-A and Hec1 and SAC override at high nocodazole concentrations. 5-ITu also impaired kinetochore recruitment of Bub1 and BubR1 kinases, and this effect was reversed by concomitant inhibition of phosphatase activity. Forcing localization of Aurora B to centromeres in 5-ITu also restored Bub1 and BubR1 localization but failed to rescue the SAC override. This result suggests that a target of 5-ITu, possibly Haspin itself, may further contribute to SAC signaling downstream of Aurora B.


2014 ◽  
Vol 206 (7) ◽  
pp. 833-842 ◽  
Author(s):  
Antonio Espert ◽  
Pelin Uluocak ◽  
Ricardo Nunes Bastos ◽  
Davinderpreet Mangat ◽  
Philipp Graab ◽  
...  

The spindle assembly checkpoint (SAC) monitors correct attachment of chromosomes to microtubules, an important safeguard mechanism ensuring faithful chromosome segregation in eukaryotic cells. How the SAC signal is turned off once all the chromosomes have successfully attached to the spindle remains an unresolved question. Mps1 phosphorylation of Knl1 results in recruitment of the SAC proteins Bub1, Bub3, and BubR1 to the kinetochore and production of the wait-anaphase signal. SAC silencing is therefore expected to involve a phosphatase opposing Mps1. Here we demonstrate in vivo and in vitro that BubR1-associated PP2A-B56 is a key phosphatase for the removal of the Mps1-mediated Knl1 phosphorylations necessary for Bub1/BubR1 recruitment in mammalian cells. SAC silencing is thus promoted by a negative feedback loop involving the Mps1-dependent recruitment of a phosphatase opposing Mps1. Our findings extend the previously reported role for BubR1-associated PP2A-B56 in opposing Aurora B and suggest that BubR1-bound PP2A-B56 integrates kinetochore surveillance and silencing of the SAC.


1997 ◽  
Vol 137 (2) ◽  
pp. 433-443 ◽  
Author(s):  
Xiao Min Wang ◽  
Ye Zhai ◽  
James E. Ferrell

The spindle assembly checkpoint prevents cells whose spindles are defective or chromosomes are misaligned from initiating anaphase and leaving mitosis. Studies of Xenopus egg extracts have implicated the Erk2 mitogen-activated protein kinase (MAP kinase) in this checkpoint. Other studies have suggested that MAP kinases might be important for normal mitotic progression. Here we have investigated whether MAP kinase function is required for mitotic progression or the spindle assembly checkpoint in vivo in Xenopus tadpole cells (XTC). We determined that Erk1 and/or Erk2 are present in the mitotic spindle during prometaphase and metaphase, consistent with the idea that MAP kinase might regulate or monitor the status of the spindle. Next, we microinjected purified recombinant XCL100, a Xenopus MAP kinase phosphatase, into XTC cells in various stages of mitosis to interfere with MAP kinase activation. We found that mitotic progression was unaffected by the phosphatase. However, XCL100 rendered the cells unable to remain arrested in mitosis after treatment with nocodazole. Cells injected with phosphatase at prometaphase or metaphase exited mitosis in the presence of nocodazole—the chromosomes decondensed and the nuclear envelope re-formed—whereas cells injected with buffer or a catalytically inactive XCL100 mutant protein remained arrested in mitosis. Coinjection of constitutively active MAP kinase kinase-1, which opposes XCL100's effects on MAP kinase, antagonized the effects of XCL100. Since the only known targets of MAP kinase kinase-1 are Erk1 and Erk2, these findings argue that MAP kinase function is required for the spindle assembly checkpoint in XTC cells.


2018 ◽  
Author(s):  
Spyridon T. Pachis ◽  
Yoshitaka Hiruma ◽  
Anastassis Perrakis ◽  
Geert J.P.L. Kops

ABSTRACTFaithful chromosome segregation relies on the ability of the spindle assembly checkpoint (SAC) to delay anaphase onset until all chromosomes are attached to the mitotic spindle via their kinetochores. MPS1 kinase is recruited to unattached kinetochores to initiate SAC signaling, and is removed from kinetochores once stable microtubule attachments have been formed to allow normal mitotic progression. Here we show that a helical fragment within the kinetochore-targeting NTE module of MPS1 is required for interactions with kinetochores, and also forms intramolecular interactions with its adjacent TPR domain. Bypassing this NTE-TPR interaction results in high MPS1 levels at kinetochores due to loss of regulatory input into MPS1 localization, ineffecient MPS1 delocalization from kinetochores upon microtubule attachment, and SAC silencing defects. These results show that SAC responsiveness to attachments relies on regulated intramolecular interactions in MPS1 and highlight the sensitivity of mitosis to perturbations in the dynamics of the MSP1-NDC80-C interactions.


2021 ◽  
Author(s):  
Tobias Raisch ◽  
Giuseppe Ciossani ◽  
Ennio d’Amico ◽  
Verena Cmentowski ◽  
Sara Carmignani ◽  
...  

In metazoans, a ≍1 megadalton (MDa) super-complex comprising the Dynein-Dynactin adaptor Spindly and the ROD-Zwilch-ZW10 (RZZ) complex is the building block of a fibrous biopolymer, the kinetochore fibrous corona. The corona assembles on mitotic kinetochores to promote microtubule capture and spindle assembly checkpoint (SAC) signaling. We report here a high-resolution cryo-EM structure that captures the essential features of the RZZ complex, including a farnesyl binding site required for Spindly binding. Using a highly predictive in vitro assay, we demonstrate that the SAC kinase MPS1 is necessary and sufficient for corona assembly at supercritical concentrations of the RZZ-Spindly (RZZS) complex, and describe the molecular mechanism of phosphorylation-dependent filament nucleation. We identify several structural requirements for RZZS polymerization in rings and sheets. Finally, we identify determinants of kinetochore localization and corona assembly of Spindly. Our results describe a framework for the long-sought-for molecular basis of corona assembly on metazoan kinetochores.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1087
Author(s):  
Janet Chenevert ◽  
Marianne Roca ◽  
Lydia Besnardeau ◽  
Antonella Ruggiero ◽  
Dalileh Nabi ◽  
...  

In eukaryotic cells, a spindle assembly checkpoint (SAC) ensures accurate chromosome segregation, by monitoring proper attachment of chromosomes to spindle microtubules and delaying mitotic progression if connections are erroneous or absent. The SAC is thought to be relaxed during early embryonic development. Here, we evaluate the checkpoint response to lack of kinetochore-spindle microtubule interactions in early embryos of diverse animal species. Our analysis shows that there are two classes of embryos, either proficient or deficient for SAC activation during cleavage. Sea urchins, mussels, and jellyfish embryos show a prolonged delay in mitotic progression in the absence of spindle microtubules from the first cleavage division, while ascidian and amphioxus embryos, like those of Xenopus and zebrafish, continue mitotic cycling without delay. SAC competence during early development shows no correlation with cell size, chromosome number, or kinetochore to cell volume ratio. We show that SAC proteins Mad1, Mad2, and Mps1 lack the ability to recognize unattached kinetochores in ascidian embryos, indicating that SAC signaling is not diluted but rather actively silenced during early chordate development.


Sign in / Sign up

Export Citation Format

Share Document