scholarly journals Loss of major nutrient sensing and signaling pathways suppresses starvation lethality in electron transport chain mutants

Author(s):  
Alisha G. Lewis ◽  
Robert Caldwell ◽  
Jason V. Rogers ◽  
Maria Ingaramo ◽  
Rebecca Y. Wang ◽  
...  

The electron transport chain (ETC) is a well-studied and highly conserved metabolic pathway that produces ATP through generation of a proton gradient across the inner mitochondrial membrane coupled to oxidative phosphorylation. ETC mutations are associated with a wide array of human disease conditions and to aging-related phenotypes in a number of different organisms. In this study, we sought to better understand the role of the ETC in aging using a yeast model. A panel of ETC mutant strains that fail to survive starvation was used to isolate suppressor mutants that survive. These suppressors tend to fall into major nutrient sensing and signaling pathways, suggesting that the ETC is involved in proper starvation signaling to these pathways in yeast. These suppressors also partially restore ETC-associated gene expression and pH homeostasis defects, though it remains unclear if these phenotypes directly cause the suppression or are simply effects. This work further highlights the complex cellular network connections between metabolic pathways and signaling events in the cell, and their potential roles in aging and age-related diseases.

2014 ◽  
Vol 76 (7) ◽  
pp. 456-458 ◽  
Author(s):  
Chris Romero ◽  
James Choun

This activity provides students an interactive demonstration of the electron transport chain and chemiosmosis during aerobic respiration. Students use simple, everyday objects as hydrogen ions and electrons and play the roles of the various proteins embedded in the inner mitochondrial membrane to show how this specific process in cellular respiration produces ATP. The activity works best as a supplement after you have already discussed the electron transport chain in lecture but can be used prior to instruction to help students visualize the processes that occur. This demonstration was designed for general college biology for majors at a community college, but it could be used in any introductory college-level or advanced placement biology course.


2020 ◽  
Vol 21 (18) ◽  
pp. 6941
Author(s):  
Jennifer F. Carr ◽  
David Garcia ◽  
Alejandro Scaffa ◽  
Abigail L. Peterson ◽  
Andrew J. Ghio ◽  
...  

Heme oxygenase-1 is induced by many cellular stressors and catalyzes the breakdown of heme to generate carbon monoxide and bilirubin, which confer cytoprotection. The role of HO-1 likely extends beyond the simple production of antioxidants, for example HO-1 activity has also been implicated in metabolism, but this function remains unclear. Here we used an HO-1 knockout lung cell line to further define the contribution of HO-1 to cellular metabolism. We found that knockout cells exhibit reduced growth and mitochondrial respiration, measured by oxygen consumption rate. Specifically, we found that HO-1 contributed to electron transport chain activity and utilization of certain mitochondrial fuels. Loss of HO-1 had no effect on intracellular non-heme iron concentration or on proteins whose levels and activities depend on available iron. We show that HO-1 supports essential functions of mitochondria, which highlights the protective effects of HO-1 in diverse pathologies and tissue types. Our results suggest that regulation of heme may be an equally significant role of HO-1.


2004 ◽  
Vol 380 (1) ◽  
pp. 193-202 ◽  
Author(s):  
Fredrik I. JOHANSSON ◽  
Agnieszka M. MICHALECKA ◽  
Ian M. MØLLER ◽  
Allan G. RASMUSSON

The inner mitochondrial membrane is selectively permeable, which limits the transport of solutes and metabolites across the membrane. This constitutes a problem when intramitochondrial enzymes are studied. The channel-forming antibiotic AlaM (alamethicin) was used as a potentially less invasive method to permeabilize mitochondria and study the highly branched electron-transport chain in potato tuber (Solanum tuberosum) and pea leaf (Pisum sativum) mitochondria. We show that AlaM permeabilized the inner membrane of plant mitochondria to NAD(P)H, allowing the quantification of internal NAD(P)H dehydrogenases as well as matrix enzymes in situ. AlaM was found to inhibit the electron-transport chain at the external Ca2+-dependent rotenone-insensitive NADH dehydrogenase and around complexes III and IV. Nevertheless, under optimal conditions, especially complex I-mediated NADH oxidation in AlaM-treated mitochondria was much higher than what has been previously measured by other techniques. Our results also show a difference in substrate specificities for complex I in mitochondria as compared with inside-out submitochondrial particles. AlaM facilitated the passage of cofactors to and from the mitochondrial matrix and allowed the determination of NAD+ requirements of malate oxidation in situ. In summary, we conclude that AlaM provides the best method for quantifying NADH dehydrogenase activities and that AlaM will prove to be an important method to study enzymes under conditions that resemble their native environment not only in plant mitochondria but also in other membrane-enclosed compartments, such as intact cells, chloroplasts and peroxisomes.


2011 ◽  
pp. 281-289 ◽  
Author(s):  
Z. TATARKOVÁ ◽  
S. KUKA ◽  
P. RAČAY ◽  
J. LEHOTSKÝ ◽  
D. DOBROTA ◽  
...  

Mitochondrial dysfunction and accumulation of oxidative damage have been implicated to be the major factors of aging. However, data on age-related changes in activities of mitochondrial electron transport chain (ETC) complexes remain controversial and molecular mechanisms responsible for ETC dysfunction are still largely unknown. In this study, we examined the effect of aging on activities of ETC complexes and oxidative damage to proteins and lipids in cardiac mitochondria from adult (6-month-old), old (15-month-old) and senescent (26-month-old) rats. ETC complexes I-IV displayed different extent of inhibition with age. The most significant decline occurred in complex IV activity, whereas complex II activity was unchanged in old rats and was only slightly reduced in senescent rats. Compared to adult, old and senescent rat hearts had significantly higher levels of malondialdehyde, 4-hydroxynonenal (HNE) and dityrosine, while thiol group content was reduced. Despite marked increase in HNE content with age (25 and 76 % for 15- and 26-month-old rats, respectively) Western blot analysis revealed only few HNE-protein adducts. The present study suggests that non-uniform decline in activities of ETC complexes is due, at least in part, to mitochondrial oxidative damage; however, lipid peroxidation products appear to have a limited impact on enzyme functions.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 125-125
Author(s):  
Shabbir Ansari ◽  
Usha R Pendurthi ◽  
L. Vijaya Mohan Rao

Abstract Cellular lipid peroxidation is known to contribute to the initiation and propagation of atherothrombosis. Recently, we showed that 4-hydroxynonenal (HNE), one of the most abundant reactive aldehydes generated from the oxidation of ω-6 fatty acids, enhanced tissue factor (TF) activity on monocytic cells by externalizing phosphatidylserine (PS) in p38 MAPK activation-dependent manner. However, at present, the link between HNE-induced oxidative stress and p38 MAPK activation and the relation of p38 MAPK activation to PS externalization is not fully known. In the present study, we investigated the role of mitochondrial electron transport chain and reactive oxygen species (ROS) generation in HNE-mediated TF decryption. In addition, we also investigated the thioredoxin reductase-thioredoxin-ASK-1 axis in regulating p38 MAPK activation and PS externalization in decrypting TF. To elucidate potential mechanisms of HNE-induced TF decryption, we first determined the role of specific mitochondrial electron transport chain complexes in regulating TF activity. Since THP-1 cells used in the study had a measurable basal TF activity, they were not further treated with LPS or other agonists to induce TF synthesis. The electron transport chain in these cells was disrupted by specific inhibitors and cell surface TF activity was measured by factor X activation assay. Inhibition of complex I and complex IV by rotenone and sodium azide, respectively, enhanced the procoagulant activity of basal level TF. However, the inhibition of complex I and IV had no significant effect on the HNE-mediated increase in TF activity. Interestingly, inhibition of ATP synthase/complex V by oligomycin significantly inhibited the HNE-mediated enhanced TF activity, indicating that HNE-mediated TF decryption may involve the generation of ATP. In agreement with earlier published studies in monocytes/macrophages, stimulation of THP-1 cells with ATP increased cell surface TF activity. However, at present, it is yet to be shown that HNE treatment actually increased the production of ATP and that this ATP is responsible for the HNE-mediated TF decryption. It is also possible that HNE, either through a generation of ROS in mitochondria or directly, can affect the activity of thioredoxin either by intracellular signaling or by directly forming an adduct with it. Therefore, we next investigated the effect of HNE on the activity of thioredoxin reductase, the enzyme known to regulate thioredoxin activity in the cell. Our data showed that HNE treatment inhibited the activity of thioredoxin reductase in a concentration-dependent manner, 40 µM of HNE inhibiting 50% of the activity and a complete inhibition at 80µM of HNE. To further determine the downstream signaling cascade involved in the PS externalization and TF decryption on exposure to HNE, we analyzed the effect of HNE on the activation of MKK3 and MKK6, the protein kinases known to activate p38 MAPK and the downstream signaling activator of thioredoxin/thioredoxin reductase pathway. HNE treatment increased the phosphorylation of MKK3 and MKK6 in a time-dependent manner. In summary, our data suggest that HNE may mediate TF decryption via modulation of thioredoxin/thioredoxin reductase system, which results in activation of MKK3/MKK6, which in turn activates p38 MAPK that is responsible for PS externalization. The study highlights the potential role of oxidative stress in regulating TF activity in thrombotic disorders and provides a mechanistic link between disorders associated with cellular oxidative stress and thrombosis. Disclosures No relevant conflicts of interest to declare.


1976 ◽  
Vol 3 (6) ◽  
pp. 771
Author(s):  
K.C Woo ◽  
C.B Osmond

Mitochondria isolated from spinach leaves contain at least two glycine decarboxylating systems. One system is stimulated by ADP and evidently couples to the electron transport chain. The other system, three times as active, is stimulated by NAD+ and oxaloacetate and is not coupled directly to electron transport; however, comparative studies with uncouplers and inhibitors indicate it may depend on a membrane potential generated by electron transport. In this system, the role of oxaloacetate appears to be the regeneration of NAD+, via mitochondrial malate dehydrogenase, as an electron acceptor during glycine decarboxylation. Mitochondria isolated from spinach leaves also catalyse a rapid glycine-dependent exchange of bicarbonate into acid-stable products. This reaction is stimulated by the addition of lipoamide dehydrogenase. The activity of the glycine decarboxylation and exchange reactions are irreversibly lost when mitochondria are broken. When corrections are applied to account for mitochondrial breakage, the rates of glycine decarboxylation and the exchange reaction are comparable to the rates of CO*2 evolution from leaves of C*3 plants in air. The role of these processes in vivo and relationship to other sources of CO*2 in the glycollate pathway are discussed.


Sign in / Sign up

Export Citation Format

Share Document