4. The great catastrophes

Author(s):  
Paul B. Wignall

What is a mass extinction? Mass extinction events are geologically short intervals of time (always under a million years), marked by dramatic increases of extinction rates in a broad range of environments around the world. In essence they are global catastrophes that left no environment unaffected and that have fundamentally changed the trajectory of life. ‘The great catastrophes’ describes the big five mass extinctions—the end-Ordovician 445 million years ago, the Late Devonian 374 million years ago, the Permo-Triassic 252 million years ago, the end-Triassic 201 million years ago, and Cretaceous-Paleogene sixty-six million years ago—and thoughts on their likely causes, along with other important extinction events identified at the start of the Cambrian and in the Early Jurassic.

2018 ◽  
Vol 285 (1878) ◽  
pp. 20180232 ◽  
Author(s):  
Ádám T. Kocsis ◽  
Carl J. Reddin ◽  
Wolfgang Kiessling

Mass extinctions are defined by extinction rates significantly above background levels and have had substantial consequences for the evolution of life. Geographically selective extinctions, subsequent originations and species redistributions may have changed global biogeographical structure, but quantification of this change is lacking. In order to assess quantitatively the biogeographical impact of mass extinctions, we outline time-traceable bioregions for benthic marine species across the Phanerozoic using a compositional network. Mass extinction events are visually recognizable in the geographical depiction of bioregions. The end-Permian extinction stands out with a severe reduction of provinciality. Time series of biogeographical turnover represent a novel aspect of the analysis of mass extinctions, confirming concentration of changes in the geographical distribution of benthic marine life.


Author(s):  
Tony Hallam

In drawing together the various strands we first need to ask how catastrophic, as opposed to merely calamitous, the various mass-extinction events were. As was indicated in Chapter 3, there is no way in which the stratigraphic record can ever provide dates that are precise to within less than a few thousand years. Thus, the connection between a bolide impact and a catastrophic phase of extinction lasting no longer than a few years could never be established with a high degree of confidence from the record of the strata alone. All that can be done is to establish a pattern that is consistent with such a scenario. As was also pointed out in Chapter 3, a change that is drastic enough over an interval of a few thousand to a few tens of thousands of years can reasonably be described as catastrophic in the context of normal patterns of geological change extending over millions of years. Several events seem to qualify unequivocally: the end-Permian, the end-Cretaceous, and, on a smaller scale, the end-Palaeocene, which affected only one group of deep-sea organisms. It needs to be added, though, that the end-Cretaceous event seems to have been the culmination of a phase of increased extinction rates among a wide variety of organisms. Such patterns of catastrophic change cannot yet be ruled out for the other mass-extinction events, but decisive evidence is not yet forthcoming. A more gradual or multiple pattern of extinctions appears to be more likely for the end-Ordovician, late Devonian, and end-Triassic extinctions and also for more minor ones such as those in the early Jurassic and mid-Cretaceous. Catastrophic coups de grâce are quite possible, if not probable, as culminating factors for some of these events, but more detailed collecting and statistical work across the world is required to put forward a stronger case than has been made so far. It has been claimed that the ‘big five’ mass extinctions are something special, as opposed to lesser extinction events, in so far as they were too drastic and rapid in their effects on many organisms to give time for normal Darwinian adaptive responses to operate.


2021 ◽  
Vol 288 (1960) ◽  
Author(s):  
Pedro M. Monarrez ◽  
Noel A. Heim ◽  
Jonathan L. Payne

Whether mass extinctions and their associated recoveries represent an intensification of background extinction and origination dynamics versus a separate macroevolutionary regime remains a central debate in evolutionary biology. The previous focus has been on extinction, but origination dynamics may be equally or more important for long-term evolutionary outcomes. The evolution of animal body size is an ideal process to test for differences in macroevolutionary regimes, as body size is easily determined, comparable across distantly related taxa and scales with organismal traits. Here, we test for shifts in selectivity between background intervals and the ‘Big Five’ mass extinction events using capture–mark–recapture models. Our body-size data cover 10 203 fossil marine animal genera spanning 10 Linnaean classes with occurrences ranging from Early Ordovician to Late Pleistocene (485–1 Ma). Most classes exhibit differences in both origination and extinction selectivity between background intervals and mass extinctions, with the direction of selectivity varying among classes and overall exhibiting stronger selectivity during origination after mass extinction than extinction during the mass extinction. Thus, not only do mass extinction events shift the marine biosphere into a new macroevolutionary regime, the dynamics of recovery from mass extinction also appear to play an underappreciated role in shaping the biosphere in their aftermath.


Paleobiology ◽  
2007 ◽  
Vol 33 (3) ◽  
pp. 435-454 ◽  
Author(s):  
Andrew Z. Krug ◽  
Mark E. Patzkowsky

AbstractUnderstanding what drives global diversity requires knowledge of the processes that control diversity and turnover at a variety of geographic and temporal scales. This is of particular importance in the study of mass extinctions, which have disproportionate effects on the global ecosystem and have been shown to vary geographically in extinction magnitude and rate of recovery.Here, we analyze regional diversity and turnover patterns for the paleocontinents of Laurentia, Baltica, and Avalonia spanning the Late Ordovician mass extinction and Early Silurian recovery. Using a database of genus occurrences for inarticulate and articulate brachiopods, bivalves, anthozoans, and trilobites, we show that sampling-standardized diversity trends differ for the three regions. Diversity rebounded to pre-extinction levels within 5 Myr in the paleocontinent of Laurentia, compared with 15 Myr or longer for Baltica and Avalonia. This increased rate of recovery in Laurentia was due to both lower Late Ordovician extinction rates and higher Early Silurian origination rates relative to the other continents. Using brachiopod data, we dissected the Rhuddanian recovery into genus origination and invasion. This analysis revealed that standing diversity in the Rhuddanian consisted of a higher proportion of invading taxa in Laurentia than in either Baltica or Avalonia. Removing invading genera from diversity counts caused Rhuddanian diversity to fall in Laurentia. However, Laurentian diversity still rebounded to pre-extinction levels within 10 Myr of the extinction event, indicating that genus origination rates were also higher in Laurentia than in either Baltica or Avalonia. Though brachiopod diversity in Laurentia was lower than in the higher-latitude continents prior to the extinction, increased immigration and genus origination rates made it the most diverse continent following the extinction. Higher rates of origination in Laurentia may be explained by its large size, paleogeographic location, and vast epicontinental seas. It is possible that the tropical position of Laurentia buffered it somewhat from the intense climatic fluctuations associated with the extinction event, reducing extinction intensities and allowing for a more rapid rebound in this region. Hypotheses explaining the increased levels of invasion into Laurentia remain largely untested and require further scrutiny. Nevertheless, the Late Ordovician mass extinction joins the Late Permian and end-Cretaceous as global extinction events displaying an underlying spatial complexity.


2018 ◽  
Vol 285 (1889) ◽  
pp. 20180404 ◽  
Author(s):  
Alexander M. Dunhill ◽  
William J. Foster ◽  
Sandro Azaele ◽  
James Sciberras ◽  
Richard J. Twitchett

The Late Triassic and Early Toarcian extinction events are both associated with greenhouse warming events triggered by massive volcanism. These Mesozoic hyperthermals were responsible for the mass extinction of marine organisms and resulted in significant ecological upheaval. It has, however, been suggested that these events merely involved intensification of background extinction rates rather than significant shifts in the macroevolutionary regime and extinction selectivity. Here, we apply a multivariate modelling approach to a vast global database of marine organisms to test whether extinction selectivity varied through the Late Triassic and Early Jurassic. We show that these hyperthermals do represent shifts in the macroevolutionary regime and record different extinction selectivity compared to background intervals of the Late Triassic and Early Jurassic. The Late Triassic mass extinction represents a more profound change in selectivity than the Early Toarcian extinction but both events show a common pattern of selecting against pelagic predators and benthic photosymbiotic and suspension-feeding organisms, suggesting that these groups of organisms may be particularly vulnerable during episodes of global warming. In particular, the Late Triassic extinction represents a macroevolutionary regime change that is characterized by (i) the change in extinction selectivity between Triassic background intervals and the extinction event itself; and (ii) the differences in extinction selectivity between the Late Triassic and Early Jurassic as a whole.


Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 281
Author(s):  
Dmitry A. Ruban

Recent eustatic reconstructions allow for reconsidering the relationships between the fifteen Paleozoic–Mesozoic mass extinctions (mid-Cambrian, end-Ordovician, Llandovery/Wenlock, Late Devonian, Devonian/Carboniferous, mid-Carboniferous, end-Guadalupian, end-Permian, two mid-Triassic, end-Triassic, Early Jurassic, Jurassic/Cretaceous, Late Cretaceous, and end-Cretaceous extinctions) and global sea-level changes. The relationships between eustatic rises/falls and period-long eustatic trends are examined. Many eustatic events at the mass extinction intervals were not anomalous. Nonetheless, the majority of the considered mass extinctions coincided with either interruptions or changes in the ongoing eustatic trends. It cannot be excluded that such interruptions and changes could have facilitated or even triggered biodiversity losses in the marine realm.


2009 ◽  
Vol 8 (3) ◽  
pp. 207-212 ◽  
Author(s):  
Georg Feulner

AbstractDespite tremendous interest in the topic and decades of research, the origins of the major losses of biodiversity in the history of life on Earth remain elusive. A variety of possible causes for these mass-extinction events have been investigated, including impacts of asteroids or comets, large-scale volcanic eruptions, effects from changes in the distribution of continents caused by plate tectonics, and biological factors, to name but a few. Many of these suggested drivers involve or indeed require changes of Earth's climate, which then affect the biosphere of our planet, causing a global reduction in the diversity of biological species. It can be argued, therefore, that a detailed understanding of these climatic variations and their effects on ecosystems are prerequisites for a solution to the enigma of biological extinctions. Apart from investigations of the paleoclimate data of the time periods of mass extinctions, climate-modelling experiments should be able to shed some light on these dramatic events. Somewhat surprisingly, however, only a few comprehensive modelling studies of the climate changes associated with extinction events have been undertaken. These studies will be reviewed in this paper. Furthermore, the role of modelling in extinction research in general and suggestions for future research are discussed.


Impact! ◽  
1996 ◽  
Author(s):  
Gerrit L. Verschuur

Our instinct for survival drives us to learn as much as possible about what goes on around us. The better we understand nature, the better we will be able to predict its vagaries so as to avoid life-threatening situations. Unfortunately, nature is seldom so kind as to arrange for disasters to occur like clockwork, yet that does not dampen our enthusiasm when even a hint of periodicity in a complex phenomenon is spotted. This helps account for the furor that was created when a few paleontologists claimed that mass extinctions of species seemed to recur in a regular manner. A cycle, a periodicity, had been found! That implied that perhaps they might be able to predict nature’s next move. This is how I interpret the extraordinary public interest that was generated by the claims made around 1984 that the mass extinction phenomenon showed a roughly 30-million-year period (others said it was 26 million years). Almost immediately, several books appeared on the subject as well as many, many articles in the popular press and in science magazines. This activity marked the short life of the Death Star fiasco. Given our instinctual urge to look for order in the chaos of existence, the identification of a periodicity in mass-extinction events was a great discovery, if real. What was not highlighted by those who climbed aboard the bandwagon, however, was that the last peak in the pattern occurred about 13 million years ago. If impact-related mass extinction events were produced every 30 million years, there obviously was no cause for concern that we would be hit by a 10-kilometer object in the next 17 million years. Phew! I think that the suggestion that mass extinctions occurred on a regular cycle caused as much interest as it did because we all want to believe that there is no immediate danger to us. The Death Star fiasco began when David Raup and John Sepkowski of the University of Chicago published a report claiming that mass extinction events recurred about every 26 million years. They were followed by Michael Rampino and Richard Stothers of the Goddard Institute for Space Studies in New York who claimed that the period was more like 30 million years, at least during the last 250 million years.


Paleobiology ◽  
1992 ◽  
Vol 18 (2) ◽  
pp. 148-160 ◽  
Author(s):  
Alan E. Hubbard ◽  
Norman L. Gilinsky

Although much natural historical evidence has been adduced in support of the occurrence of several mass extinctions during the Phanerozoic, unambiguous statistical confirmation of the mass extinction phenomenon has remained elusive. Using bootstrapping techniques that have not previously been applied to the study of mass extinction, we have amassed strong or very strong statistical evidence for mass extinctions (see text for definitions) during the Late Ordovician, Late Permian, and Late Cretaceous. Bootstrapping therefore verifies three of the mass extinction events that were proposed by Raup and Sepkoski (1982). A small amount of bootstrapping evidence is also presented for mass extinctions in the Induan (Triassic) and Coniacean (Cretaceous) Stages, but high overall turnover rates (including high origination) in the Induan and uncertain estimates of the temporal duration of the Coniacean force us to conclude that the evidence is not compelling.We also present the results of more liberal X2 tests of the differences between expected and observed numbers of familial extinctions for stratigraphic stages. In addition to verifying the mass extinctions identified using bootstrapping, these analyses suggest that several stages that could not be verified as mass extinction stages using bootstrapping (including the last three in the Devonian, and the Norian Stage of the Triassic) should still be regarded as candidates for mass extinction. Further analysis will be required to test these stages in more detail.


Sign in / Sign up

Export Citation Format

Share Document