In drawing together the various strands we first need to ask how catastrophic, as opposed to merely calamitous, the various mass-extinction events were. As was indicated in Chapter 3, there is no way in which the stratigraphic record can ever provide dates that are precise to within less than a few thousand years. Thus, the connection between a bolide impact and a catastrophic phase of extinction lasting no longer than a few years could never be established with a high degree of confidence from the record of the strata alone. All that can be done is to establish a pattern that is consistent with such a scenario. As was also pointed out in Chapter 3, a change that is drastic enough over an interval of a few thousand to a few tens of thousands of years can reasonably be described as catastrophic in the context of normal patterns of geological change extending over millions of years. Several events seem to qualify unequivocally: the end-Permian, the end-Cretaceous, and, on a smaller scale, the end-Palaeocene, which affected only one group of deep-sea organisms. It needs to be added, though, that the end-Cretaceous event seems to have been the culmination of a phase of increased extinction rates among a wide variety of organisms. Such patterns of catastrophic change cannot yet be ruled out for the other mass-extinction events, but decisive evidence is not yet forthcoming. A more gradual or multiple pattern of extinctions appears to be more likely for the end-Ordovician, late Devonian, and end-Triassic extinctions and also for more minor ones such as those in the early Jurassic and mid-Cretaceous. Catastrophic coups de grâce are quite possible, if not probable, as culminating factors for some of these events, but more detailed collecting and statistical work across the world is required to put forward a stronger case than has been made so far. It has been claimed that the ‘big five’ mass extinctions are something special, as opposed to lesser extinction events, in so far as they were too drastic and rapid in their effects on many organisms to give time for normal Darwinian adaptive responses to operate.