scholarly journals Diversity, development and evolution of archegonia in land plants

Author(s):  
Dmitry D Sokoloff ◽  
Margarita V Remizowa

Abstract We review the diversity and development of archegonia, the female reproductive organs of land-plant gametophytes. The archegonium is a uniquely land-plant structure, and studies of its evolution benefit from use of a comparative approach in a phylogenetic context. Archegonia of most land plants share a common developmental motif, here termed a T-shaped pattern. A primary axial cell produces a primary cover cell and a central cell by horizontal division. The upper cell usually divides vertically and the lower one horizontally. In mosses such as Atrichum, the T-shaped stage is shifted towards the end of archegonium development, whereas in vascular plants it appears at the beginning of development, but these stages are still probably homologous. The fully exposed archegonia are traditionally viewed as an ancestral (plesiomorphic) condition in land plants, but there is no direct support for this view. We speculate that the fully exposed condition is derived and synapomorphic for setaphytes (mosses and liverworts). The fully sunken hornwort archegonia may be similar to the ancestral type of land-plant archegonia. Developmental evidence suggests that archegonium necks of setaphytes and tracheophytes are not homologous to each other. The neck wall of pteridophytes is composed of four-celled tiers, and one such tier is present in gymnosperms with motile male gametes. Neck-cell arrangement is much more plastic in archegonia of gymnosperms with sperm cell delivery by pollen tube (siphonogamy), in which the neck plays a role similar to pollen-tube transmitting tissue of angiosperms. Angiosperm synergids are probably homologues of gymnosperm neck cells, and the angiosperm egg cell is probably homologous to the ventral canal cell of gymnosperms. Developmental genetic bases of archegonium diversity in land plants remain to be understood. Even descriptive developmental data are currently missing or controversial for some key lineages of land plants.

2000 ◽  
Vol 355 (1398) ◽  
pp. 769-793 ◽  
Author(s):  
Karen Sue Renzaglia ◽  
R. Joel Duff ◽  
Daniel L. Nickrent ◽  
David J. Garbary

As the oldest extant lineages of land plants, bryophytes provide a living laboratory in which to evaluate morphological adaptations associated with early land existence. In this paper we examine reproductive and structural innovations in the gametophyte and sporophyte generations of hornworts, liverworts, mosses and basal pteridophytes. Reproductive features relating to spermatogenesis and the architecture of motile male gametes are overviewed and evaluated from an evolutionary perspective. Phylogenetic analyses of a data set derived from spermatogenesis and one derived from comprehensive morphogenetic data are compared with a molecular analysis of nuclear and mitochondrial small subunit rDNA sequences. Although relatively small because of a reliance on water for sexual reproduction, gametophytes of bryophytes are the most elaborate of those produced by any land plant. Phenotypic variability in gametophytic habit ranges from leafy to thalloid forms with the greatest diversity exhibited by hepatics. Appendages, including leaves, slime papillae and hairs, predominate in liverworts and mosses, while hornwort gametophytes are strictly thalloid with no organized external structures. Internalization of reproductive and vegetative structures within mucilage–filled spaces is an adaptive strategy exhibited by hornworts. The formative stages of gametangial development are similar in the three bryophyte groups, with the exception that in mosses apical growth is intercalated into early organogenesis, a feature echoed in moss sporophyte ontogeny. A monosporangiate, unbranched sporophyte typifies bryophytes, but developmental and structural innovations suggest the three bryophyte groups diverged prior to elaboration of this generation. Sporophyte morphogenesis in hornworts involves non–synchronized sporogenesis and the continued elongation of the single sporangium, features unique among archegoniates. In hepatics, elongation of the sporophyte seta and archegoniophore is rapid and requires instantaneous wall expandability and hydrostatic support. Unicellular, spiralled elaters and capsule dehiscence through the formation of four regular valves are autapomorphies of liverworts. Sporophytic sophistications in the moss clade include conducting tissue, stomata, an assimilative layer and an elaborate peristome for extended spore dispersal. Characters such as stomata and conducting cells that are shared among sporophytes of mosses, hornworts and pteridophytes are interpreted as parallelisms and not homologies. Our phylogenetic analysis of three different data sets is the most comprehensive to date and points to a single phylogenetic solution for the evolution of basal embryophytes. Hornworts are supported as the earliest divergent embryophyte clade with a moss/liverwort clade sister to tracheophytes. Among pteridophytes, lycophytes are monophyletic and an assemblage containing ferns, Equisetum and psilophytes is sister to seed plants. Congruence between morphological and molecular hypotheses indicates that these data sets are tracking the same phylogenetic signal and reinforces our phylogenetic conclusions. It appears that total evidence approaches are valuable in resolving ancient radiations such as those characterizing the evolution of early embryophytes. More information on land plant phylogeny can be found at: http://www.science.siu.edu/landplants/index.html.


Zygote ◽  
1993 ◽  
Vol 1 (2) ◽  
pp. 143-154 ◽  
Author(s):  
Bing-Quan Huang ◽  
Elisabeth S. Pierson ◽  
Scott D. Russell ◽  
Antonio Tiezzi ◽  
Mauro Cresti

The cytoskeletal organisation of the isolated embryo sac and egg cells of Plumbago zeylanica was examined before, during and after pollen tube penetration into the embryo sac to determine the potential involvement of microtubules and actin filaments in fertilisation. Material was singly and triply stained using Hoechst 33258 to localise DNA, fluorescein isothiocyanate (FITC)-labelled anti- α-tubulin to detect microtubules and rhodamine-phalloidin to visualise F-actin. Microtubules in the unfertilised egg cell are longitudinally aligned in the micropylar and mid-lateral areas, aggregating into bundles near the filiform apparatus. In the perinuclear cytoplasm of the egg cell, microtubules become more or less randomly aligned. F-actin bundles form a longitudinally aligned mesh in the chalazal cytoplasm of the egg cell. In the central cell, microtubules and F-actin are distributed along transvacuolar strands and are also evident in the perinuclear region and at the periphery of the cell. During pollen tube penetration, sparse microtubule bundles near the pathway of the pollen tube may form an apparent microtubular ‘conduit’ surrounding the male gametes at the delivery site. Actin aggregates become organised near the pathway of the pollen tube and at the delivery site of the sperm cells. Subsequently, actin aggregates form a ‘corona’ structure in the intercellular region between the egg and central cell where gametic fusion occurs. The corona may have a role in maintaining the close proximity of the egg and central cell and helping the two sperm cells move and bind to their target cells. The cytoskeleton may also be involved in causing the two nuclei of the egg and central cell to approach one another at the site of gametic fusion and transporting the two sperm nuclei into alignment with their respective female nucleus. The cytoskeleton is reorganised during early embryogenesis.


1982 ◽  
Vol 60 (11) ◽  
pp. 2219-2230 ◽  
Author(s):  
Scott D. Russell

The ultrastructural organization of the megagametophyte of Plumbago zeylanica, which lacks synergids, was examined in chemically and physically fixed ovules after entry of the pollen tube. Similar to angiosperms with conventionally organized megagametophytes, the pollen tube enters the ovule through a micropyle, formed by the inner integument, and approaches the female gametophyte by growing between nucellar cells. Unlike other described female gametophytes, however, continued pollen tube growth results in direct penetration of the base of the egg through cell wall projections forming a filiform apparatus and is completed between the egg and central cell without disrupting either of these cells' plasma membranes. A terminal pollen tube aperture forms when the pollen tube reaches an area of strong curvature near the summit of the egg; this results in the release of two sperm cells, the vegetative nucleus, and a limited amount of pollen cytoplasm. The formerly continuous chalazal egg cell wall is locally disrupted near the tip of the pollen tube and apparently is thus modified for reception of male gametes. Discharged pollen cytoplasm rapidly degenerates between the egg and central cell, but unlike pollen tube discharge in conventionally organized megagametophytes, it is unassociated with the degeneraton of any receptor cell within the female gametophyte. Sperm nuclei are transmitted, one to the egg and the other to the central cell, to effect double fertilization by nuclear fusion with their respective female reproductive nuclei. The vegetative nucleus and discharged pollen cytoplasm degenerate between the developing embryo and endosperm during early embryogenesis. The emerging concept that the egg of Plumbago possesses combined egg and synergid functions is supported by the present study and suggests that the megagametophyte of this plant displays a highly specialized egg apparatus composed exclusively of a single, modified egg cell.


2020 ◽  
Vol 71 (11) ◽  
pp. 3254-3269 ◽  
Author(s):  
Janine M R Fürst-Jansen ◽  
Sophie de Vries ◽  
Jan de Vries

Abstract Embryophytes (land plants) can be found in almost any habitat on the Earth’s surface. All of this ecologically diverse embryophytic flora arose from algae through a singular evolutionary event. Traits that were, by their nature, indispensable for the singular conquest of land by plants were those that are key for overcoming terrestrial stressors. Not surprisingly, the biology of land plant cells is shaped by a core signaling network that connects environmental cues, such as stressors, to the appropriate responses—which, thus, modulate growth and physiology. When did this network emerge? Was it already present when plant terrestrialization was in its infancy? A comparative approach between land plants and their algal relatives, the streptophyte algae, allows us to tackle such questions and resolve parts of the biology of the earliest land plants. Exploring the biology of the earliest land plants might shed light on exactly how they overcame the challenges of terrestrialization. Here, we outline the approaches and rationale underlying comparative analyses towards inferring the genetic toolkit for the stress response that aided the earliest land plants in their conquest of land.


1986 ◽  
Vol 34 (4) ◽  
pp. 413 ◽  
Author(s):  
EG Williams ◽  
V Kaul ◽  
JL Rouse ◽  
BF Palser

Frequent overgrowths of pollen tubes within the embryo sac are characteristic of a number of interspecific crosses in the genus Rhododendron (Ericaceae). The combined techniques of sectioning, squashing and whole-ovule clearing have confirmed that in ovules showing this phenomenon the pollen tube fails to terminate growth and release sperms on entry into a synergid; instead it continues to grow beyond the synergid and egg cell, often filling the main body of the embryo sac with a coiled and distorted mass. Such ovules fail to develop further. The occurrence and possible causes of this error syndrome are discussed.


2016 ◽  
Author(s):  
Florencia Berruezo ◽  
Flavio S. J. de Souza ◽  
Pablo I. Picca ◽  
Sergio I. Nemirovsky ◽  
Leandro Martinez-Tosar ◽  
...  

AbstractMicroRNAs (miRNAs) are short, single stranded RNA molecules that regulate the stability and translation of messenger RNAs in diverse eukaryotic groups. Several miRNA genes are of ancient origin and have been maintained in the genomes of animal and plant taxa for hundreds of millions of years, and functional studies indicate that ancient miRNAs play key roles in development and physiology. In the last decade, genome and small RNA (sRNA) sequencing of several plant species have helped unveil the evolutionary history of land plant miRNAs. Land plants are divided into bryophytes (liverworts, mosses), lycopods (clubmosses and spikemosses), monilophytes (ferns and horsetails), gymnosperms (cycads, conifers and allies) and angiosperms (flowering plants). Among these, the fern group occupies a key phylogenetic position, since it represents the closest extant cousin taxon of seed plants, i.e. gymno- and angiosperms. However, in spite of their evolutionary, economic and ecological importance, no fern genome has been sequenced yet and few genomic resources are available for this group. Here, we sequenced the small RNA fraction of an epiphytic South American fern, Pleopeltis minima (Polypodiaceae), and compared it to plant miRNA databases, allowing for the identification of miRNA families that are shared by all land plants, shared by all vascular plants (tracheophytes) or shared by euphyllophytes (ferns and seed plants) only. Using the recently described transcriptome of another fern, Lygodium japonicum, we also estimated the degree of conservation of fern miRNA targets in relation to other plant groups. Our results pinpoint the origin of several miRNA families in the land plant evolutionary tree with more precision and are a resource for future genomic and functional studies of fern miRNAs.


Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 529
Author(s):  
Emmy Dhooghe ◽  
Dirk Reheul ◽  
Marie-Christine Van Labeke

Hybridization in flowering plants depends, in the first place, on the delivery of pollen to a receptive stigma and the subsequent growth of pollen tubes through the style to the ovary, where the sperm nucleus of the pollen grain can ultimately fertilize the egg cell. However, reproductive failure is often observed in distant crosses and is caused by pre- and/or post-zygotic barriers. In this study, the reproductive pre-fertilization barriers of intertribal crosses between Anemone coronaria L. and Ranunculus asiaticus L., both belonging to the Ranunculaceae, were investigated. Despite the incongruity of intertribal crosses between A. coronaria and R. asiaticus having been of low intensity at the stigmatic level, interstylar obstructions of the pollen tube growth occurred, which confirmed the presence of pre-fertilization barriers. We show that these barriers could be partially bypassed by combining pollination with a stigma treatment. More specifically, a significantly higher ratio of the pollen tube length to the total style length and a better seed set were observed when the stigma was treated with the auxin 2,4-dichlorophenoxyacetic acid (2,4-D, 1 mg.mL−1) together with the cytokinin kinetin (KIN, 0.5 mg.mL−1) 24 h after pollination, irrespective of the cross direction. More specifically, the stigma treatments with any form of auxin (combined or not combined with cytokinin) resulted in a full seed set, assuming an apomictic fruit set, because no pollination was needed to obtain these seeds.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 804 ◽  
Author(s):  
Debra J Skinner ◽  
Venkatesan Sundaresan

The haploid female gametophyte (embryo sac) is an essential reproductive unit of flowering plants, usually comprising four specialized cell types, including the female gametes (egg cell and central cell). The differentiation of these cells relies on spatial signals which pattern the gametophyte along a proximal-distal axis, but the molecular and genetic mechanisms by which cell identities are determined in the embryo sac have long been a mystery. Recent identification of key genes for cell fate specification and their relationship to hormonal signaling pathways that act on positional cues has provided new insights into these processes. A model for differentiation can be devised with egg cell fate as a default state of the female gametophyte and with other cell types specified by the action of spatially regulated factors. Cell-to-cell communication within the gametophyte is also important for maintaining cell identity as well as facilitating fertilization of the female gametes by the male gametes (sperm cells).


2020 ◽  
Vol 71 (11) ◽  
pp. 3270-3278 ◽  
Author(s):  
Burkhard Becker ◽  
Xuehuan Feng ◽  
Yanbin Yin ◽  
Andreas Holzinger

Abstract The present review summarizes the effects of desiccation in streptophyte green algae, as numerous experimental studies have been performed over the past decade particularly in the early branching streptophyte Klebsormidium sp. and the late branching Zygnema circumcarinatum. The latter genus gives its name to the Zygenmatophyceae, the sister group to land plants. For both organisms, transcriptomic investigations of desiccation stress are available, and illustrate a high variability in the stress response depending on the conditions and the strains used. However, overall, the responses of both organisms to desiccation stress are very similar to that of land plants. We highlight the evolution of two highly regulated protein families, the late embryogenesis abundant (LEA) proteins and the major intrinsic protein (MIP) family. Chlorophytes and streptophytes encode LEA4 and LEA5, while LEA2 have so far only been found in streptophyte algae, indicating an evolutionary origin in this group. Within the MIP family, a high transcriptomic regulation of a tonoplast intrinsic protein (TIP) has been found for the first time outside the embryophytes in Z. circumcarinatum. The MIP family became more complex on the way to terrestrialization but simplified afterwards. These observations suggest a key role for water transport proteins in desiccation tolerance of streptophytes.


Sign in / Sign up

Export Citation Format

Share Document