embryo sac
Recently Published Documents


TOTAL DOCUMENTS

703
(FIVE YEARS 80)

H-INDEX

35
(FIVE YEARS 3)

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 219
Author(s):  
Radosav Cerović ◽  
Milica Fotirić Akšić ◽  
Milena Đorđević ◽  
Mekjell Meland

Compatibility and synchrony between specialized tissues of the pistil, female gametophytes and male gametophytes, are necessary for successful pollination, fertilization, and fruit set in angiosperms. The aim of the present work was to study the development and viability of embryo sacs, as well as fertilization success, in relation to the fruit set of the cultivars ‘Mallard’, ‘Edda’, ‘Jubileum’, and ‘Reeves’, under specific Norwegian climatic conditions. Emasculated, unpollinated, and open-pollinated flowers were collected at the beginning of flowering, and on the 3rd, 6th, 9th, and 12th days after flowering, from all four plum cultivars over two years (2018/2019). Ovaries were dehydrated, embedded in paraffin wax, sectioned, stained, and observed under a light microscope. Results showed the existence of synchronization between successive phases in the development of the embryo sac and individual phases of flowering. All plum cultivars had higher percentages of viable embryo sacs, fertilized embryo sacs, and fruit set in 2018 than in 2019. These differences may be related to the very low temperatures during the post-full-flowering period in 2019, and to the low adaptation of some studied cultivars to unfavorable conditions. In our study, the cultivar ‘Jubileum’ showed the highest percentage of viable embryo sacs, fertilized embryo sacs, and fruit set compared to other cultivars, i.e., the best low-temperature adaptation.


Caryologia ◽  
2021 ◽  
Vol 74 (3) ◽  
pp. 91-97
Author(s):  
Ciler Kartal ◽  
Nuran Ekici ◽  
Almina Kargacıoğlu ◽  
Hazal Nurcan Ağırman

In this study gynoecium, megasporogenesis, megagametogenesis and female gametophyte of Gladiolus italicus Miller were examined cytologically and histologically by using light microscopy techniques. Ovules of G. italicus are of anatropous, bitegmic and crassinucellate type. Embryo sac development is of monosporic Polygonum type. Polar nuclei fuse before fertilization to form a secondary nucleus near the antipodals. The female gametophyte development of G. italicus was investigated for the first time with this study.


Author(s):  
Juanita Gutiérrez-Valencia ◽  
Marco Fracassetti ◽  
Robert Horvath ◽  
Benjamin Laenen ◽  
Aurélie Désamore ◽  
...  

Abstract Fertilization in angiosperms involves the germination of pollen on the stigma, followed by the extrusion of a pollen tube that elongates through the style and delivers two sperm cells to the embryo sac. Sexual selection could occur throughout this process when male gametophytes compete for fertilization. The strength of sexual selection during pollen competition should be affected by the number of genotypes deposited on the stigma. As increased self-fertilization reduces the number of mating partners, and the genetic diversity and heterozygosity of populations, it should thereby reduce the intensity of sexual selection during pollen competition. Despite the prevalence of mating system shifts, few studies have directly compared the molecular signatures of sexual selection during pollen competition in populations with different mating systems. Here we analyzed whole-genome sequences from natural populations of Arabis alpina, a species showing mating system variation across its distribution, to test whether shifts from cross- to self-fertilization result in molecular signatures consistent with sexual selection on genes involved in pollen competition. We found evidence for efficient purifying selection on genes expressed in vegetative pollen, and overall weaker selection on sperm-expressed genes. This pattern was robust when controlling for gene expression level and specificity. In agreement with the expectation that sexual selection intensifies under cross-fertilization, we found that the efficacy of purifying selection on male gametophyte-expressed genes was significantly stronger in genetically more diverse and outbred populations. Our results show that intra-sexual competition shapes the evolution of pollen-expressed genes, and that its strength fades with increasing self-fertilization rates.


2021 ◽  
Author(s):  
◽  
Frederick Bruce Sampson

<p>The inflorescences, flowers and the vascularization of floral parts of Hedycarya arborea and Laurelia novae-zelandiae were described and comparisons made with other members of the family in an attempt to determine the basic types of inflorescences, flowers and floral vascularization in the family. The vegetative, inflorescence and floral meristems of the two genera were compared. It was concluded that the vegetative apices of both had the tunica-corpus configuration typical of many other woody Ranales and other orders. The inflorescence apices were quite similar to the vegetative ones. The young floral apices are in a state of transition from a tunica-corpus to a mantle-core configuration and older floral apices had the mantle-core configuration, which is typical of the floral apices of many woody Ranales. Unusual features of the floral apices of Hedycarya and Laurelia were the lack of a pronounced rib meristem and the occurrence of relatively frequent divisions within vacuolate cells of the core. The ontogeny of the stamens of Hedycarya and Laurelia was described and comparisons were made. In both genera the micro-sporangium developed in a similar fashions: in Hedycarya 5-6 wall layers are formed inside the epidermis; in Laurelia there are 3-5 layers. Both genera had a typically thickened endothecium and a tapetum of the secretory type in which the tapetal cells become binucleate during the first meiotic division of the pollen mother cells. In Hedycarya the meiotic divisions of the pollen mother cells are of the successive type in which walls form by means of centrifugal cell plates Pollen grains remain in permanent tetrads in this genus. In Laurelia wall formation at the end of meiosis is of a modified simultaneous type, which may not have been hitherto described in the literature. Pollen grains are not in permanent tetrads. When the first division occurs in each microspore in Hedycarya, all four cells of a tetrad are at the same stage of division and the generative cell is cut off towards the distal face of the grain. Each microspore is in the two celled condition when shed. It was deduced that the generative cell is cut off against what represents a radial wall of the grain (with reference to the tetrad stage) in Laurelia. Pollen is shed in either the two or three celled condition. Comparisons were made with the development of microsporangia and male gametophytes in other woody Ranales. A study was made of the ontogeny, structure and function of the staminal appendages of Laurelia. It was found that the appendages function as nectaries, the nectar being predominantly sucrose. After a discussion of the various theories as to the morphological nature of the staminal appendages of the Laurales, it was concluded that they are morphologically staminodes. The carpels of Hedycarya and Laurelia have a basically similar ontogeny in which, as in the Lauraceae, the terminal stigmatic region develops from a solid terminal meristem in contrast to many woody Ranales in which the stigma-consists of crests which surround the external part of the cleft of the carpel. The ovules of Hedycarya and Laurelia resemble those of most other woody Ranales in being bitegmic, crassinucellate and anatropous with a monosporic 8-nucleate embryo sac of the Polygonum type. Both linear and T-shaped megaspore tetrads were found in the two genera. Laurelia has pseudocarps which develop after anthesis and enclose plumose achenes, but in Hedycarya the fruits are drupes. It was concluded that Laurelia and Hedycarya belong to two subfamilies which have been separated from each other for a long time and have undergone considerable evolution in different directions. It was also concluded that the Monimiaceae are closely related to the Lauraceae.</p>


2021 ◽  
Author(s):  
◽  
Frederick Bruce Sampson

<p>The inflorescences, flowers and the vascularization of floral parts of Hedycarya arborea and Laurelia novae-zelandiae were described and comparisons made with other members of the family in an attempt to determine the basic types of inflorescences, flowers and floral vascularization in the family. The vegetative, inflorescence and floral meristems of the two genera were compared. It was concluded that the vegetative apices of both had the tunica-corpus configuration typical of many other woody Ranales and other orders. The inflorescence apices were quite similar to the vegetative ones. The young floral apices are in a state of transition from a tunica-corpus to a mantle-core configuration and older floral apices had the mantle-core configuration, which is typical of the floral apices of many woody Ranales. Unusual features of the floral apices of Hedycarya and Laurelia were the lack of a pronounced rib meristem and the occurrence of relatively frequent divisions within vacuolate cells of the core. The ontogeny of the stamens of Hedycarya and Laurelia was described and comparisons were made. In both genera the micro-sporangium developed in a similar fashions: in Hedycarya 5-6 wall layers are formed inside the epidermis; in Laurelia there are 3-5 layers. Both genera had a typically thickened endothecium and a tapetum of the secretory type in which the tapetal cells become binucleate during the first meiotic division of the pollen mother cells. In Hedycarya the meiotic divisions of the pollen mother cells are of the successive type in which walls form by means of centrifugal cell plates Pollen grains remain in permanent tetrads in this genus. In Laurelia wall formation at the end of meiosis is of a modified simultaneous type, which may not have been hitherto described in the literature. Pollen grains are not in permanent tetrads. When the first division occurs in each microspore in Hedycarya, all four cells of a tetrad are at the same stage of division and the generative cell is cut off towards the distal face of the grain. Each microspore is in the two celled condition when shed. It was deduced that the generative cell is cut off against what represents a radial wall of the grain (with reference to the tetrad stage) in Laurelia. Pollen is shed in either the two or three celled condition. Comparisons were made with the development of microsporangia and male gametophytes in other woody Ranales. A study was made of the ontogeny, structure and function of the staminal appendages of Laurelia. It was found that the appendages function as nectaries, the nectar being predominantly sucrose. After a discussion of the various theories as to the morphological nature of the staminal appendages of the Laurales, it was concluded that they are morphologically staminodes. The carpels of Hedycarya and Laurelia have a basically similar ontogeny in which, as in the Lauraceae, the terminal stigmatic region develops from a solid terminal meristem in contrast to many woody Ranales in which the stigma-consists of crests which surround the external part of the cleft of the carpel. The ovules of Hedycarya and Laurelia resemble those of most other woody Ranales in being bitegmic, crassinucellate and anatropous with a monosporic 8-nucleate embryo sac of the Polygonum type. Both linear and T-shaped megaspore tetrads were found in the two genera. Laurelia has pseudocarps which develop after anthesis and enclose plumose achenes, but in Hedycarya the fruits are drupes. It was concluded that Laurelia and Hedycarya belong to two subfamilies which have been separated from each other for a long time and have undergone considerable evolution in different directions. It was also concluded that the Monimiaceae are closely related to the Lauraceae.</p>


2021 ◽  
Author(s):  
Hector Arnaldo Sato ◽  
Ana Maria Gonzalez

The most extreme manifestation of parasitism occurs in holoparasites, plants that are totally achlorophyllous. Among them, the genus Lophophytum (Balanophoraceae) is characterized by an aberrant vegetative body called a tuber, devoid of stems and leaves. The genus is exclusively South American, comprising five taxa, which parasitize the roots of trees or shrubs. This review focuses on the Argentine species of the genus: L. leandri and L. mirabile subsp. bolivianum. Topics covered include: morphology and anatomy of the vegetative body and host–parasite connection; structure, anatomy and development of the staminate and pistillate flowers; sporogenesis and gametogenesis, embryo sac inversion; endospermogenesis, embryogenesis and fruit development. The evolutionary trend in the gynoecium and embryo sac of the Balanophoraceae is also discussed to reflect the variability. Finally, observations were made on the synchronization of the life cycles of the parasites and hosts to infer possible ways by which parasitism has evolved, until now unknown.


Botany ◽  
2021 ◽  
Author(s):  
Evelyn E. Osorio ◽  
Arthur R. Davis ◽  
Rosalind Bueckert

High temperatures affect reproductive growth and lead to yield loss in many crops. Field pea is heat sensitive, but little is known about the effect of high temperature on ovules. We investigated heat impact on ovules of flowers at various reproductive nodes of field pea using growth chambers. Six cultivars exhibiting diverse heat tolerance were exposed to four days of heat (35°C day/18°C night) during early flowering. Post-treatment ovules and embryo sacs were assessed employing clearing by light, and fluorescence, microscopy. Results indicated that greater ovule and embryo sac development occurred on some nodes, but poor ovule and embryo sac expansion resulted on other nodes of the same heat-treated plants. While advanced ovule and embryo sac development were identified on heat-tolerant cultivars, a combination of advanced and less advanced ovule and embryo sac development occurred in intermediate and heat-sensitive cultivars. More than 90% of the affected ovules displayed embryos at various stages of development, which indicated disruption around fertilization or shortly thereafter. Callose accumulation around the vascular bundle within ovules suggested disruption of assimilate transport to the embryo sac. The contrasting pattern of ovule development at different nodes implied a conflict between early aging and maternal supply of heat-treated plants.


2021 ◽  
Author(s):  
Juanita Gutiérrez-Valencia ◽  
Marco Fracassetti ◽  
Robert Horvath ◽  
Benjamin Laenen ◽  
Aurélie Désamore ◽  
...  

Fertilization in angiosperms involves the germination of pollen on the stigma, followed by the extrusion of a pollen tube that elongates through the style and delivers two sperm cells to the embryo sac. Sexual selection could occur throughout this process when male gametophytes compete for fertilization. The strength of sexual selection during pollen competition should be affected by the number of genotypes deposited on the stigma. As increased self-fertilization reduces the number of mating partners, and the genetic diversity and heterozygosity of populations, it should thereby reduce the intensity of sexual selection during pollen competition. Despite the prevalence of mating system shifts, few studies have directly compared the molecular signatures of sexual selection during pollen competition in populations with different mating systems. Here we analyzed whole-genome sequences from natural populations of Arabis alpina, a species showing mating system variation across its distribution, to test whether shifts from cross- to self-fertilization result in molecular signatures consistent with sexual selection on genes involved in pollen competition. We found evidence for efficient purifying selection on genes expressed in vegetative pollen, and overall weaker selection on sperm-expressed genes. This pattern was robust when controlling for gene expression level and specificity. In agreement with the expectation that sexual selection intensifies under cross-fertilization, we found that the efficacy of purifying selection on male gametophyte-expressed genes was significantly stronger in genetically more diverse and outbred populations. Our results show that intra-sexual competition shapes the evolution of pollen-expressed genes, and that its strength fades with increasing self-fertilization rates.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1818
Author(s):  
Jose Carballo ◽  
Diego Zappacosta ◽  
Juan Pablo Selva ◽  
Mario Caccamo ◽  
Viviana Echenique

Eragrostis curvula (Schrad.) Ness is a grass with a particular apomictic embryo sac development called Eragrostis type. Apomixis is a type of asexual reproduction that produces seeds without fertilization in which the resulting progeny is genetically identical to the mother plant and with the potential to fix the hybrid vigour from more than one generation, among other advantages. The absence of meiosis and the occurrence of only two rounds of mitosis instead of three during embryo sac development make this model unique and suitable to be transferred to economically important crops. Throughout this review, we highlight the advances in the knowledge of apomixis in E. curvula using different techniques such as cytoembryology, DNA methylation analyses, small-RNA-seq, RNA-seq, genome assembly, and genotyping by sequencing. The main bulk of evidence points out that apomixis is inherited as a single Mendelian factor, and it is regulated by genetic and epigenetic mechanisms controlled by a complex network. With all this information, we propose a model of the mechanisms involved in diplosporous apomixis in this grass. All the genetic and epigenetic resources generated in E. curvula to study the reproductive mode changed its status from an orphan to a well-characterised species.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xining Geng ◽  
Yufei Xia ◽  
Hao Chen ◽  
Kang Du ◽  
Jun Yang ◽  
...  

Homologous recombination (HR), the most significant event in meiosis, has important implications for genetic diversity and evolution in organisms. Heteroduplex DNA (hDNA), the product of HR, can be captured by artificially induced chromosome doubling during the development of the embryo sac to inhibit postmeiotic segregation, subsequently, and hDNAs are directly detected using codominant simple sequence repeat (SSR) markers. In the present study, two hybrid triploid populations derived from doubling the chromosomes of the embryo sac induced by high temperature in Populus tomentosa served as starting materials. Eighty-seven, 62, and 79 SSR markers on chromosomes 01, 04, and 19, respectively, that were heterozygous in the maternal parent and different from the paternal parent were screened to detect and characterize the hDNA in P. tomentosa. The results showed that the hDNA frequency patterns on chromosomes changed slightly when the number of SSR primers increased. The highest hDNA frequency occurred at the adjacent terminal on chromosomes, which was slightly higher than those at the terminals in the two genotypic individuals, and the hDNA frequency gradually decreased as the locus-centromere distance decreased. With the increase in the number of SSR markers employed for detection, the number of recombination events (REs) detected significantly increased. In regions with high methylation or long terminal repeat (LTR) retrotransposon enrichment, the frequency of hDNA was low, and high frequencies were observed in regions with low sequence complexity and high gene density. High-frequency recombination occurring at high gene density regions strongly affected the association between molecular markers and quantitative trait loci (QTLs), which was an important factor contributing to the difficulty encountered by MAS in achieving the expected breeding results.


Sign in / Sign up

Export Citation Format

Share Document