scholarly journals Osteopontin-Enriched Algae Modulates the Gut Microbiota Composition in Weaning Piglets Infected with Enterotoxigenic Escherichia Coli (P06-069-19)

2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Mei Wang ◽  
Brooke Smith ◽  
Brock Adams ◽  
Miller Tran ◽  
Ryan Dilger ◽  
...  

Abstract Objectives Enterotoxigenic Escherichia coli (ETEC) are an important cause of diarrhea in human infants and young farm animals. Osteopontin (OPN), a glycoprotein present in high concentration in human milk, has immunomodulatory functions, which could indirectly impact the microbiota. Furthermore, a previous study has shown fecal microbiota composition differs between wild-type and OPN knockout mice. Herein, the effects of OPN-enriched algae on the gut microbiota composition and volatile fatty acid (VFA) concentrations of ETEC-infected piglets were assessed. Methods Naturally-farrowed piglets were sow-reared for 21 days and then randomized to two weaning diets: WT (formula + 1% wild-type algae) or OPN (formula + 1% OPN-enriched algae). On postnatal day (PND) 31, all piglets were infected orally with a live culture of ETEC (1010 colony-forming unit/3 mL dose) daily for three consecutive days. On PND 41, ascending colon (AC) contents were collected. Gut microbiota was assessed by sequencing V3-V4 regions of 16S rRNA gene and VFAs were determined by gas chromatography. Alpha-diversity and VFAs were analyzed using PROC MIXED procedure of SAS. Beta-diversity was evaluated by permutational multivariate analysis of variance (PERMANOVA) and differential abundance analysis on the bacterial genera was performed using DESeq2 package of R. Results Shannon indices were lower in the AC contents of OPN piglets compared to WT piglets. The overall colonic microbiota of OPN piglets differed from that of WT piglets (PERMANOVA P = 0.015). At genus level, OPN-enriched algae increased the abundance of Streptococcus, decreased the abundances of Sutterella, Candidatus Soleaferrea, dga-11 gut group, Rikenellaceae RC9 gut group, Ruminococcaceae UCG-010, unculturedRuminococcaceae, Prevotella 2 and 7 compared to piglets consuming wild-type algae (P < 0. 05). OPN piglets also had higher (P < 0.05) concentrations of acetate, propionate, butyrate and valerate compared to WT. Conclusions In ETEC infected piglets, 1% OPN-enriched algae decreased alpha-diversity and modulated the microbiota composition and VFA profiles compared to 1% WT algae. Other studies have shown that OPN inhibits biofilm formation in vitro, but future research is needed to assess in vivo microbiome-modulation mechanisms. Funding Sources Triton Algae Innovations.

2020 ◽  
Author(s):  
Dandan Jiang ◽  
Xin He ◽  
Marc Valitutto ◽  
Li Chen ◽  
Qin Xu ◽  
...  

Abstract Background:The Chinese monal (Lophophorus lhuysii) is an endangered bird species, with a wild population restricted to the mountains of southwest China, and only one known captive population in the world. We investigated the fecal microbiota and metabolome of wild and captive Chinese monals to explore differences and similarities in nutritional status and digestive characteristics. An integrated approach combining 16S ribosomal RNA (16S rRNA) gene sequencing and ultra-high performance liquid chromatography (UHPLC) based metabolomics were used to examine the fecal microbiota composition and the metabolomic profile of Chinese monals. Results: The results showed that the alpha diversity of gut microbes in the wild group were significantly higher than that in the captive group and the core bacterial taxa in the two groups showed remarkable differences at phylum, class, order, and family levels. Metabolomic profiling also revealed differences, mainly related to galactose, starch and sucrose metabolism, fatty acid, bile acid biosynthesis and bile secretion. Furthermore, strong correlations of metabolite types and bacterial genus were detected. Conclusions: There were remarkable differences in the gut microbiota composition and metabolomic profile between wild and captive Chinese monals. This study has established a baseline for a normal gut microbiota and metabolomic profile for wild Chinese monals, thus allowing us to evaluate if differences seen in captive organisms have an impact on their overall health and reproduction.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Dandan Jiang ◽  
Xin He ◽  
Marc Valitutto ◽  
Li Chen ◽  
Qin Xu ◽  
...  

Abstract Background The Chinese monal (Lophophorus lhuysii) is an endangered bird species, with a wild population restricted to the mountains in southwest China, and only one known captive population in the world. We investigated the fecal microbiota and metabolome of wild and captive Chinese monals to explore differences and similarities in nutritional status and digestive characteristics. An integrated approach combining 16S ribosomal RNA (16S rRNA) gene sequencing and ultra-high performance liquid chromatography (UHPLC) based metabolomics were used to examine the fecal microbiota composition and the metabolomic profile of Chinese monals. Results The results showed that the alpha diversity of gut microbes in the wild group were significantly higher than that in the captive group and the core bacterial taxa in the two groups showed remarkable differences at phylum, class, order, and family levels. Metabolomic profiling also revealed differences, mainly related to galactose, starch and sucrose metabolism, fatty acid, bile acid biosynthesis and bile secretion. Furthermore, strong correlations between metabolite types and bacterial genus were detected. Conclusions There were remarkable differences in the gut microbiota composition and metabolomic profile between wild and captive Chinese monals. This study has established a baseline for a normal gut microbiota and metabolomic profile for wild Chinese monals, thus allowing us to evaluate if differences seen in captive organisms have an impact on their overall health and reproduction.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2364 ◽  
Author(s):  
Xiaozhong Zhong ◽  
Janas M. Harrington ◽  
Seán R. Millar ◽  
Ivan J. Perry ◽  
Paul W. O’Toole ◽  
...  

Emerging evidence links the gut microbiota with several chronic diseases. However, the relationships between metabolic syndrome (MetS), obesity and the gut microbiome are inconsistent. This study aimed to investigate associations between gut microbiota composition and diversity and metabolic health status in older adults (n = 382; median age = 69.91 [± 5 years], male = 50.79%) with and without obesity. Gut microbiome composition was determined by sequencing 16S rRNA gene amplicons. Results showed that alpha diversity and richness, as indicated by the Chao1 index (p = 0.038), phylogenetic diversity (p = 0.003) and observed species (p = 0.038) were higher among the metabolically healthy non-obese (MHNO) individuals compared to their metabolically unhealthy non-obese (MUNO) counterparts. Beta diversity analysis revealed distinct differences between the MHNO and MUNO individuals on the phylogenetic distance scale (R2 = 0.007, p = 0.004). The main genera contributing to the gut composition among the non-obese individuals were Prevotella, unclassified Lachnospiraceae, and unclassified Ruminococcaceae. Prevotella, Blautia, Bacteroides, and unclassified Ruminococcaceae mainly contributed to the variation among the obese individuals. Co-occurrence network analysis displayed different modules pattern among different metabolic groups and revealed groups of microbes significantly correlated with individual metabolic health markers. These findings confirm relationships between metabolic health status and gut microbiota composition particularly, among non-obese older adults.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2308
Author(s):  
Annefleur M. Koopen ◽  
Nicolien C. de Clercq ◽  
Moritz V. Warmbrunn ◽  
Hilde Herrema ◽  
Mark Davids ◽  
...  

Plasma metabolites affect a range of metabolic functions in humans, including insulin sensitivity (IS). A subset of these plasma metabolites is modified by the gut microbiota. To identify potential microbial–metabolite pathways involved in IS, we investigated the link between plasma metabolites, gut microbiota composition, and IS, using the gold-standard for peripheral and hepatic IS measurement in a group of participants with metabolic syndrome (MetSyn). In a cross-sectional study with 115 MetSyn participants, fasting plasma samples were collected for untargeted metabolomics analysis and fecal samples for 16S rRNA gene amplicon sequencing. A two-step hyperinsulinemic euglycemic clamp was performed to assess peripheral and hepatic IS. Collected data were integrated and potential interdependence between metabolites, gut microbiota, and IS was analyzed using machine learning prediction models. Plasma metabolites explained 13.2% and 16.7% of variance in peripheral and hepatic IS, respectively. Fecal microbiota composition explained 4.2% of variance in peripheral IS and was not related to hepatic IS. Although metabolites could partially explain the variances in IS, the top metabolites related to peripheral and hepatic IS did not significantly correlate with gut microbiota composition (both on taxonomical level and alpha-diversity). However, all plasma metabolites could explain 18.5% of the variance in microbial alpha-diversity (Shannon); the top 20 metabolites could even explain 44.5% of gut microbial alpha-diversity. In conclusion, plasma metabolites could partially explain the variance in peripheral and hepatic IS; however, these metabolites were not directly linked to the gut microbiota composition, underscoring the intricate relation between plasma metabolites, the gut microbiota, and IS in MetSyn


2022 ◽  
Author(s):  
Yan-Fu Qu ◽  
Yan-Qing Wu ◽  
Yi-Jin Jiang ◽  
Xiang Ji

Abstract Background: Various external and internal factors affect the gut microbiota of animals. The colonization and proliferation of gut microbes have been studied in a diverse array of animal taxa but remain poorly known in snakes. Here, we used the 16S rRNA gene sequencing technology on the Roach 454 platform to analyze the gut microbiota composition using fecal samples collected from three snake groups [gravid females, newly hatched (preprandial) hatchlings and postprandial hatchlings] of two congeneric colubrid snake species (Elaphe carinata and E. taeniura) that are sympatric across a wide range in mainland China. We tested two hypotheses. First, the gut microbiota should not differ between the two species at hatching if the maternal or genetic contribution has no role in affecting post-hatching gut microbial colonization. Second, differences in the gut microbiota between newly hatched (preprandial) and postprandial hatchlings should not exist in both species if the dietary contribution has no role in affecting post-hatching gut microbial colonization.Results: The top three dominant phyla were Firmicutes, Bacteroidetes, and Proteobacteria in both species. None of the measured alpha diversity indexes differed among the three snake groups or between the two species. The relative abundance of the gut microbiota differed among the three snake groups and between the two species, and so did the relative abundances of the functions associated with the metabolism, cellular processes and environmental information processing. Evidence from gravid females and hatchlings showed that the gut microbiota composition was similar between the two species. The metabolism held the overwhelming predominance of functional categories at the top level in both species.Conclusion: Only the relative abundance of the gut microbiota differed between the two species, and the gut microbiota composition changed rapidly in postprandial hatchlings and differed among the three snakes groups in both species. From these findings, we may conclude that the dietary rather than the maternal or genetic contribution affects gut microbial colonization in snakes.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 378-378
Author(s):  
Mei Wang ◽  
Marcia Monaco ◽  
Victoria C Daniels ◽  
Johanna Hirvonen ◽  
Henrik Max Jensen ◽  
...  

Abstract Objectives Human milk is a source of oligosaccharides that promote the growth of beneficial bacteria. Bifidobacterium longum subsp. infantis, a dominant species in breastfed infants, has the capacity to utilize milk oligosaccharides. Herein, the effects of 2'fucosyllactose (2'FL), B. infantis Bi-26 (Bi-26), and a combination thereof on piglet gut microbiota composition and volatile fatty acid (VFA) concentrations were assessed. Methods Fifty-two intact male pigs were provided ad libitum access to a nutritionally-adequate milk replacer without (CON) or with 1.0 g/L 2’FL (FL) from postnatal day 2 to 34/35. Pigs were further stratified to receive either 12% glycerol or Bi-26 in glycerol orally, 109 colony-forming unit/day (BI and FLBI). Ascending colon (AC) and rectal contents were collected. Gut microbiota profiles were assessed by 16S rRNA gene sequencing and real-time PCR and VFA were determined by gas chromatography. Results Neither 2'FL nor Bi-26 affected the overall microbiota composition (P &gt; 0. 05); however, alpha diversity and the relative abundances of bacterial genera were influenced by the treatments. Shannon indices were lower in AC of piglets fed Bi-26 (P = 0.048). Proportions of Clostridia UCG-014, Lachnoclostridium, Christensenellaceae R-7 group and Anaerovoracaceae family XIII AD3011 group were lower, while Faecalibacterium was higher in AC of piglets receiving 2'FL (P &lt; 0.05). Bi-26 decreased (P &lt; 0.05) colonic abundances of Parabacteroides, Fusobacterium, Butyricimonas and uncultured Prevotellaceae. In rectal contents,7 bacterial genera were impacted by 2'FL and 3 by Bi-26 (P &lt; 0.05). Interactive effects were observed for several bacterial genera and acetate concentrations (P &lt; 0.05). In AC, Lachnospiraceae CAG-56 was higher in CON than all other groups and Allisonella was lower in BI piglets vs. CON. Rectal contents Bacteroides was higher in BI piglets than CON. Compared to CON, acetate concentrations were higher in AC of FL piglets (P &lt; 0.05). Conclusions 2'FL and Bi-26 supplemented to milk replacer exerted individual and synbiotic influences on gut bacterial composition, and 2'FL alone increased specific VFA concentration, demonstrating its prebiotic potential. Funding Sources DuPont Nutrition and Biosciences.


2020 ◽  
Author(s):  
Katarina Butorac ◽  
Martina Banic ◽  
Jasna Novak ◽  
Andreja Leboš Pavunc ◽  
Ksenija Uroic ◽  
...  

Abstract Background: The influence of an S-layer-carrying strain Lactobacillus brevis SF9B and a plantaricin-producing strain Lactobacillus plantarum SF9C on the gut microbiota composition was evaluated in the rats. Considering the probiotic potential of Lb. brevis SF9B, this study aimed to examine the antibacterial activity of Lb. plantarum SF9C and potential for their in vivo colonisation, which could be the basis for the investigation of their synergistic functionality. Results: A plantaricin-encoding cluster was identified in Lb. plantarum SF9C, a strain which efficiently inhibited the growth of Listeria monocytogenes ATCC®19111™ and Staphylococcus aureus 3048. Contrary to the plantaricin-producing SF9C strain, the S-layer-carrying SF9B strain excluded Escherichia coli 3014 and Salmonella enterica serovar Typhimurium FP1 from adhesion to Caco-2 cells. Finally, DGGE analysis of the V2-V3 region of the 16S rRNA gene confirmed the transit of two selected lactobacilli through the gastrointestinal tract (GIT). Microbiome profiling via the Illumina MiSeq platform revealed the prevalence of Lactobacillus spp. in the gut microbiota of rats suggesting their colonisation potential in GIT.Conclusion: The combined application of Lb. plantarum SF9C and Lb. brevis SF9B could influence the intestinal microbiota composition, which is reflected through the increased abundance of Lactobacillus genus, but also through altered abundances of other bacterial genera, either in the model of healthy or aberrant microbiota of rats. The obtained results contributed to the functional aspects of SF9C and SF9B strains which could be incorporated in the probiotic-containing functional foods and therefore have a beneficial influence on the gut microbiota composition.


mBio ◽  
2015 ◽  
Vol 6 (5) ◽  
Author(s):  
Sandi Wong ◽  
W. Zac Stephens ◽  
Adam R. Burns ◽  
Keaton Stagaman ◽  
Lawrence A. David ◽  
...  

ABSTRACT Gut microbiota influence the development and physiology of their animal hosts, and these effects are determined in part by the composition of these microbial communities. Gut microbiota composition can be affected by introduction of microbes from the environment, changes in the gut habitat during development, and acute dietary alterations. However, little is known about the relationship between gut and environmental microbiotas or about how host development and dietary differences during development impact the assembly of gut microbiota. We sought to explore these relationships using zebrafish, an ideal model because they are constantly immersed in a defined environment and can be fed the same diet for their entire lives. We conducted a cross-sectional study in zebrafish raised on a high-fat, control, or low-fat diet and used bacterial 16S rRNA gene sequencing to survey microbial communities in the gut and external environment at different developmental ages. Gut and environmental microbiota compositions rapidly diverged following the initiation of feeding and became increasingly different as zebrafish grew under conditions of a constant diet. Different dietary fat levels were associated with distinct gut microbiota compositions at different ages. In addition to alterations in individual bacterial taxa, we identified putative assemblages of bacterial lineages that covaried in abundance as a function of age, diet, and location. These results reveal dynamic relationships between dietary fat levels and the microbial communities residing in the intestine and the surrounding environment during ontogenesis. IMPORTANCE The ability of gut microbiota to influence host health is determined in part by their composition. However, little is known about the relationship between gut and environmental microbiotas or about how ontogenetic differences in dietary fat impact gut microbiota composition. We addressed these gaps in knowledge using zebrafish, an ideal model organism because their environment can be thoroughly sampled and they can be fed the same diet for their entire lives. We found that microbial communities in the gut changed as zebrafish aged under conditions of a constant diet and became increasingly different from microbial communities in their surrounding environment. Further, we observed that the amount of fat in the diet had distinct age-specific effects on gut community assembly. These results reveal the complex relationships between microbial communities residing in the intestine and those in the surrounding environment and show that these relationships are shaped by dietary fat throughout the life of animal hosts.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jason R. Catanzaro ◽  
Juliet D. Strauss ◽  
Agata Bielecka ◽  
Anthony F. Porto ◽  
Francis M. Lobo ◽  
...  

Abstract Immunoglobulin A is the dominant antibody isotype found in mucosal secretions and enforces host-microbiota symbiosis in mice, yet selective IgA-deficiency (sIgAd) in humans is often described as asymptomatic. Here, we determined the effects of IgA deficiency on human gut microbiota composition and evaluated the possibility that mucosal secretion of IgM can compensate for a lack of secretory IgA. We used 16S rRNA gene sequencing and bacterial cell sorting to evaluate gut microbiota composition and taxa-specific antibody coating of the gut microbiota in 15 sIgAd subjects and matched controls. Despite the secretion of compensatory IgM into the gut lumen, sIgAd subjects displayed an altered gut microbiota composition as compared to healthy controls. These alterations were characterized by a trend towards decreased overall microbial diversity as well as significant shifts in the relative abundances of specific microbial taxa. While secretory IgA in healthy controls targeted a defined subset of the microbiota via high-level coating, compensatory IgM in sIgAd subjects showed less specificity than IgA and bound a broader subset of the microbiota. We conclude that IgA plays a critical and non-redundant role in controlling gut microbiota composition in humans and that secretory IgA has evolved to maintain a diverse and stable gut microbial community.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Mélanie Deschasaux ◽  
Kristien Bouter ◽  
Andrei Prodan ◽  
Evgeni Levin ◽  
Albert Groen ◽  
...  

AbstractRecently, increased attention has been drawn to the composition of the intestinal microbiota and its possible role in metabolic syndrome and type 2 diabetes (T2DM). However, potential variation in gut microbiota composition across ethnic groups is rarely considered despite observed unequal prevalence for these diseases. Our objective was therefore to study the gut microbiota composition across health, metabolic syndrome and T2DM in a multi-ethnic population residing in the same geographical area. 16S rRNA gene sequencing was performed on fecal samples from 3926 participants to the HELIUS cohort (Amsterdam, The Netherlands), representing 6 ethnic groups (Dutch, Ghanaians, Moroccans, Turks, Surinamese of either African or South-Asian descent). Included participants completed a questionnaire and underwent a physical examination and overnight fasted blood sampling. Gut microbiota composition was compared across metabolic status (diabetes with and without metformin use, metabolic syndrome and its subsequent components, health) and ethnicities using Wilcoxon-Mann-Withney tests and logistic regressions. Overall, the gut microbiota alpha-diversity (richness, Shannon index and phylogenetic diversity) decreased with worsening of the metabolic state (comparing health to metabolic syndrome to T2DM) but this was only partially reproduced in ethnic-specific analyses. In line, a lower alpha-diversity was found in relation to all metabolic syndrome components as well as in T2DM subjects using metformin compared to non-users. Alterations, mainly decreased abundances, were also observed at the genus level (many Clostridiales) in metabolic syndrome subjects and more strongly in T2DM subjects with differences across ethnic groups. In particular, we observed decreased abundances of members of the Peptostreptococcaceae family and of Turicibacter and an increased abundance of a member of the Enterobacteriaceae family. Our data highlight several compositional differences in the gut microbiota of individuals with metabolic syndrome or T2DM. These features, confirming prior observations, give some insights into potential key intestinal bacteria related to a worsening of metabolic state. Our results also underscore possible ethnic-specific profiles associated with these microbiota alterations that should be further explored.


Sign in / Sign up

Export Citation Format

Share Document