Diet Rather than Genetic Status Shapes the Gut Microbiota in Two Congeneric Snakes
Abstract Background: Various external and internal factors affect the gut microbiota of animals. The colonization and proliferation of gut microbes have been studied in a diverse array of animal taxa but remain poorly known in snakes. Here, we used the 16S rRNA gene sequencing technology on the Roach 454 platform to analyze the gut microbiota composition using fecal samples collected from three snake groups [gravid females, newly hatched (preprandial) hatchlings and postprandial hatchlings] of two congeneric colubrid snake species (Elaphe carinata and E. taeniura) that are sympatric across a wide range in mainland China. We tested two hypotheses. First, the gut microbiota should not differ between the two species at hatching if the maternal or genetic contribution has no role in affecting post-hatching gut microbial colonization. Second, differences in the gut microbiota between newly hatched (preprandial) and postprandial hatchlings should not exist in both species if the dietary contribution has no role in affecting post-hatching gut microbial colonization.Results: The top three dominant phyla were Firmicutes, Bacteroidetes, and Proteobacteria in both species. None of the measured alpha diversity indexes differed among the three snake groups or between the two species. The relative abundance of the gut microbiota differed among the three snake groups and between the two species, and so did the relative abundances of the functions associated with the metabolism, cellular processes and environmental information processing. Evidence from gravid females and hatchlings showed that the gut microbiota composition was similar between the two species. The metabolism held the overwhelming predominance of functional categories at the top level in both species.Conclusion: Only the relative abundance of the gut microbiota differed between the two species, and the gut microbiota composition changed rapidly in postprandial hatchlings and differed among the three snakes groups in both species. From these findings, we may conclude that the dietary rather than the maternal or genetic contribution affects gut microbial colonization in snakes.