S-DolLion-MSVNN: A Hybrid Model for Developing the Super-Resolution Image From the Multispectral Satellite Image

2020 ◽  
Author(s):  
Anil B Gavade ◽  
Vijay S Rajpurohit

Abstract Super-resolution offers a new image with high resolution from the low-resolution (LR) image that is highly employed for the numerous remote sensing applications. Most of the existing techniques for formation of the super-resolution image exhibit the loss of quality and deviation from the original multi-spectral LR image. Thus, this paper aims at proposing an efficient super-resolution method using the hybrid model. The hybrid model is developed using the support vector regression model and multi-support vector neural network (MSVNN), and the weights of the MSVNN is tuned optimally using the proposed algorithm. The proposed DolLion algorithm is the integration of the dolphin echolocation algorithm and lion optimization algorithm that exhibits better convergence and offers a global optimal solution. The experimentation is performed using the datasets taken from the multi-spectral scene images. The optimal and effective formation of the super-resolution image using the proposed hybrid model outperforms the existing methods, and the analysis using the second-derivative-like measure of enhancement (SDME) ensures that the proposed method is better and yields a maximum SDME of 67.6755 dB.

Author(s):  
Yumei Liu ◽  
Ningguo Qiao ◽  
Congcong Zhao ◽  
Jiaojiao Zhuang ◽  
Guangdong Tian

Accurate vibration time series modeling can mine the internal law of data and provide valuable references for reliability assessment. To improve the prediction accuracy, this study proposes a hybrid model – called the AR–SVR–CPSO hybrid model – that combines the auto regression (AR) and support vector regression (SVR) models, with the weights optimized by the chaotic particle swarm optimization (CPSO) algorithm. First, the auto regression model with the difference method is employed to model the vibration time series. Second, the support vector regression model with the phase space reconstruction is constructed for predicting the vibration time series once more. Finally, the predictions of the AR and SVR models are weighted and summed together, with the weights being optimized by the CPSO. In addition, the data collected from the reliability test platform of high-speed train transmission systems and the “NASA prognostics data repository” are used to validate the hybrid model. The experimental results demonstrate that the hybrid model proposed in this study outperforms the traditional AR and SVR models.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Meng Dun ◽  
Zhicun Xu ◽  
Yan Chen ◽  
Lifeng Wu

To predict the daily air pollutants, the fractional multivariable model is established. The hybrid model of the grey multivariable regression model with fractional order accumulation model (FGM(0, m)) and support vector regression model (SVR) is used to predict the air pollutants (PM10, PM2.5, and NO2) from December 31, 2018, to January 3, 2019, in Shijiazhuang and Chongqing. The absolute percentage errors (APEs) are used to determine the weights of the FGM(0, m) and SVR. Meanwhile, the Holt–Winters model is used to predict the air quality pollutants for the same location and period. When the mean absolute percent error (MAPE) is 0%–20%, it indicates that the model has good accuracy of fitting and prediction. The MAPE of the hybrid model is less than 20%. It is shown that except for the PM2.5 concentration prediction in Shijiazhuang (13.7%), the MAPE between the forecasting and actual values of the three air pollutants in Shijiazhuang and Chongqing was less than 10%.


Author(s):  
V. S. Sahithi ◽  
S. Agrawal

CHRIS /Proba is a multiviewing hyperspectral sensor that monitors the earth in five different zenith angles +55°, +36°, nadir, −36° and −55° with a spatial resolution of 17 m and within a spectral range of 400–1050 nm in mode 3. These multiviewing images are suitable for constructing a super resolved high resolution image that can reveal the mixed pixel of the hyperspectral image. In the present work, an attempt is made to find the location of various features constituted within the 17m mixed pixel of the CHRIS image using various super resolution reconstruction techniques. Four different super resolution reconstruction techniques namely interpolation, iterative back projection, projection on to convex sets (POCS) and robust super resolution were tried on the −36, nadir and +36 images to construct a super resolved high resolution 5.6 m image. The results of super resolution reconstruction were compared with the scaled nadir image and bicubic convoluted image for comparision of the spatial and spectral property preservance. A support vector machine classification of the best super resolved high resolution image was performed to analyse the location of the sub pixel features. Validation of the obtained results was performed using the spectral unmixing fraction images and the 5.6 m classified LISS IV image.


Author(s):  
Narina Thakur ◽  
Deepti Mehrotra ◽  
Abhay Bansal ◽  
Manju Bala

Objective: Since the adequacy of Learning Objects (LO) is a dynamic concept and changes in its use, needs and evolution, it is important to consider the importance of LO in terms of time to assess its relevance as the main objective of the proposed research. Another goal is to increase the classification accuracy and precision. Methods: With existing IR and ranking algorithms, MAP optimization either does not lead to a comprehensively optimal solution or is expensive and time - consuming. Nevertheless, Support Vector Machine learning competently leads to a globally optimal solution. SVM is a powerful classifier method with its high classification accuracy and the Tilted time window based model is computationally efficient. Results: This paper proposes and implements the LO ranking and retrieval algorithm based on the Tilted Time window and the Support Vector Machine, which uses the merit of both methods. The proposed model is implemented for the NCBI dataset and MAT Lab. Conclusion: The experiments have been carried out on the NCBI dataset, and LO weights are assigned to be relevant and non - relevant for a given user query according to the Tilted Time series and the Cosine similarity score. Results showed that the model proposed has much better accuracy.


Sign in / Sign up

Export Citation Format

Share Document