image reconstruction algorithm
Recently Published Documents


TOTAL DOCUMENTS

424
(FIVE YEARS 63)

H-INDEX

23
(FIVE YEARS 3)

2022 ◽  
pp. 1-13
Author(s):  
Lei Shi ◽  
Gangrong Qu ◽  
Yunsong Zhao

BACKGROUND: Ultra-limited-angle image reconstruction problem with a limited-angle scanning range less than or equal to π 2 is severely ill-posed. Due to the considerably large condition number of a linear system for image reconstruction, it is extremely challenging to generate a valid reconstructed image by traditional iterative reconstruction algorithms. OBJECTIVE: To develop and test a valid ultra-limited-angle CT image reconstruction algorithm. METHODS: We propose a new optimized reconstruction model and Reweighted Alternating Edge-preserving Diffusion and Smoothing algorithm in which a reweighted method of improving the condition number is incorporated into the idea of AEDS image reconstruction algorithm. The AEDS algorithm utilizes the property of image sparsity to improve partially the results. In experiments, the different algorithms (the Pre-Landweber, AEDS algorithms and our algorithm) are used to reconstruct the Shepp-Logan phantom from the simulated projection data with noises and the flat object with a large ratio between length and width from the real projection data. PSNR and SSIM are used as the quantitative indices to evaluate quality of reconstructed images. RESULTS: Experiment results showed that for simulated projection data, our algorithm improves PSNR and SSIM from 22.46db to 39.38db and from 0.71 to 0.96, respectively. For real projection data, our algorithm yields the highest PSNR and SSIM of 30.89db and 0.88, which obtains a valid reconstructed result. CONCLUSIONS: Our algorithm successfully combines the merits of several image processing and reconstruction algorithms. Thus, our new algorithm outperforms significantly other two algorithms and is valid for ultra-limited-angle CT image reconstruction.


Author(s):  
Zlatan Alagic ◽  
Jacqueline Diaz Cardenas ◽  
Kolbeinn Halldorsson ◽  
Vitali Grozman ◽  
Stig Wallgren ◽  
...  

Abstract Purpose To compare the image quality between a deep learning–based image reconstruction algorithm (DLIR) and an adaptive statistical iterative reconstruction algorithm (ASiR-V) in noncontrast trauma head CT. Methods Head CT scans from 94 consecutive trauma patients were included. Images were reconstructed with ASiR-V 50% and the DLIR strengths: low (DLIR-L), medium (DLIR-M), and high (DLIR-H). The image quality was assessed quantitatively and qualitatively and compared between the different reconstruction algorithms. Inter-reader agreement was assessed by weighted kappa. Results DLIR-M and DLIR-H demonstrated lower image noise (p < 0.001 for all pairwise comparisons), higher SNR of up to 82.9% (p < 0.001), and higher CNR of up to 53.3% (p < 0.001) compared to ASiR-V. DLIR-H outperformed other DLIR strengths (p ranging from < 0.001 to 0.016). DLIR-M outperformed DLIR-L (p < 0.001) and ASiR-V (p < 0.001). The distribution of reader scores for DLIR-M and DLIR-H shifted towards higher scores compared to DLIR-L and ASiR-V. There was a tendency towards higher scores with increasing DLIR strengths. There were fewer non-diagnostic CT series for DLIR-M and DLIR-H compared to ASiR-V and DLIR-L. No images were graded as non-diagnostic for DLIR-H regarding intracranial hemorrhage. The inter-reader agreement was fair-good between the second most and the less experienced reader, poor-moderate between the most and the less experienced reader, and poor-fair between the most and the second most experienced reader. Conclusion The image quality of trauma head CT series reconstructed with DLIR outperformed those reconstructed with ASiR-V. In particular, DLIR-M and DLIR-H demonstrated significantly improved image quality and fewer non-diagnostic images. The improvement in qualitative image quality was greater for the second most and the less experienced readers compared to the most experienced reader.


2021 ◽  
Vol 22 (6) ◽  
pp. 1273-1285
Author(s):  
Keqing Ning Keqing Ning ◽  
Ze Su Keqing Ning ◽  
Zhihao Zhang Ze Su ◽  
Gwang-jun Kim Zhihao Zhang


Sign in / Sign up

Export Citation Format

Share Document