scholarly journals Limited long-distance dispersal success in a Western European fairy shrimp evidenced by nuclear and mitochondrial lineage structuring

2019 ◽  
Vol 66 (3) ◽  
pp. 227-237
Author(s):  
Paula C Rodríguez-Flores ◽  
Ernesto Recuero ◽  
Yolanda Jiménez-Ruiz ◽  
Mario García-París

Abstract Anostraca are known by their ability for long-distance dispersal, but the existence in several species of deep, geographically structured mtDNA lineages suggests their populations are subjected to allopatric differentiation, isolation, and prevalence of local scale dispersion. Tanymastix stagnalis is one of the most widespread species of Anostraca and previous studies revealed an unclear geographical pattern of mtDNA genetic diversity. Here, we analyze populations from the Iberian and Italian Peninsulas, Central Europe, and Scandinavia, with the aim to characterize the patterns of genetic diversity in a spatio-temporal framework using mtDNA and nuclear markers to test gene flow among close populations. For these aims we built a time-calibrated phylogeny and carried out Bayesian phylogeographic analyses using a continuous diffusion model. Our results indicated that T. stagnalis presents a deeply structured genetic diversity, including 7 ancient lineages, some of them even predating the Pleistocene. The Iberian Peninsula harbors high diversity of lineages, with strong isolation and recent absence of gene flow between populations. Dispersal at local scale seems to be the prevailing dispersal mode of T. stagnalis, which exhibits a pattern of isolation-by-distance in the Iberian Peninsula. We remark the vulnerability of most of these lineages, given the limited known geographic distribution of some of them, and the high risk of losing important evolutionary potential for the species.

2013 ◽  
Vol 13 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Claudia Teresa Hornung-Leoni ◽  
Victoria Sosa ◽  
June Simpson ◽  
Katia Gil

Puya raimondii, the giant Peruvian and Bolivian terrestrial bromeliad, is an emblematic endemic Andean species well represented in Huascarán National Park in Peru. This park is the largest reserve of puna (high altitude plateau) vegetation. The objective of this study is to report on genetic variation in populations of P. raimondii from Huascarán and neighboring areas. AFLP profiles with four selective primer combinations were retrieved for 60 individuals from different zones. Genetic variability was estimated and a total of 172 bands were detected, of which 79.1% were polymorphic loci. The results showed genetic differentiation among populations, and gene flow. A cluster analysis showed that individuals of P. raimondii populations located in different mountain systems could be grouped together, suggesting long distance dispersal. Thus, conservation strategies for P. raimondii have to take into account exchange between populations located far apart in distance in order to preserve the genetic diversity of this showy species.


2019 ◽  
Author(s):  
Ramiro Morales-Hojas ◽  
Asier Gonzalez-Uriarte ◽  
Fernando Alvira Iraizoz ◽  
Todd Jenkins ◽  
Lynda Alderson ◽  
...  

AbstractGenetic diversity is determinant for pest species’ success and vector competence. Understanding the ecological and evolutionary processes that determine the genetic diversity is fundamental to help identify the spatial scale at which pest populations are best managed. In the present study, we present the first comprehensive analysis of the genetic diversity and evolution of Rhopalosiphum padi, a major pest of cereals and a main vector of the barley yellow dwarf virus (BYDV), in Great Britain. We have used a genotype by sequencing approach to study whether i) there is any underlying population genetic structure in this long distant disperser pest at a national and regional scale; ii) the populations evolve as a response to environmental change and selective pressures, and; iii) the populations comprise anholocyclic lineages. Individual R. padi were collected using the Rothamsted Insect Survey’s suction-trap network at several sites across England between 2004 and 2016 as part of the RIS long-term nationwide surveillance. Results identified two genetic clusters in Great Britain that mostly paralleled a North – South division, although gene flow is ongoing between the two subpopulations. These different groups do not correspond to sexual and asexual types, sexual reproduction being predominant in Great Britain, and could correspond to ecotypes. Results also show that there is migration with gene flow across Great Britain, although there is a reduction between the northern and southern sites with the Southwestern population being the most genetically differentiated. There is no evidence for isolation-by-distance and other factors like primary host distribution could influence the migration patterns. Finally, results also show no evidence for the evolution of the R. padi population, and it is demographically stable despite the ongoing environmental change. These results are discussed in view of their relevance to pest management and the transmission of BYDV.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Inbreeding is reduced and genetic diversity enhanced when a small isolated inbred population is crossed to another unrelated population. Crossing can have beneficial or harmful effects on fitness, but beneficial effects predominate, and the risks of harmful ones (outbreeding depression) can be predicted and avoided. For crosses with a low risk of outbreeding depression, there are large and consistent benefits on fitness that persist across generations in outbreeding species. Benefits are greater in species that naturally outbreed than those that inbreed, and increase with the difference in inbreeding coefficient between crossed and inbred populations in mothers and zygotes. However, benefits are similar across invertebrates, vertebrates and plants. There are also important benefits for evolutionary potential of crossing between populations.


2010 ◽  
Vol 76 (6) ◽  
pp. 1946-1954 ◽  
Author(s):  
C. C. Linde ◽  
J. A. Liles ◽  
P. H. Thrall

ABSTRACT Founder populations of fungal plant pathogens are expected to have low levels of genetic diversity coupled with further genetic drift due to, e.g., limited host availability, which should result in additional population bottlenecks. This study used microsatellite markers in the interaction between Cakile maritima and the fungal pathogen Alternaria brassicicola to explore genetic expectations associated with such situations. The host, C. maritima, was introduced into Australia approximately 100 years ago, but it is unknown whether the pathogen was already present in Australia, as it has a wide occurrence, or whether it was introduced to Australia on brassicaceous hosts. Eleven A. brassicicola populations were studied, and all showed moderate levels of gene and genotypic diversity. Chi-square tests of the frequencies of mating type alleles, a large number of genotypes, and linkage equilibrium among microsatellite loci all suggest A. brassicicola reproduces sexually. Significant genetic differentiation was found among populations, but there was no evidence for isolation by distance effects. Bayesian analyses identified eight clusters where the inferred clusters did not represent geographical populations but instead consisted of individuals admixed from all populations. Further analysis indicated that fungal populations were more likely to have experienced a recent population expansion than a population bottleneck. It is suggested that A. brassicicola has been introduced into Australia multiple times, potentially increasing the diversity and size of any A. brassicola populations already present there. Combined with its ability to reproduce sexually, such processes appear to have increased the evolutionary potential of the pathogen through recent population expansions.


2015 ◽  
Vol 33 (4) ◽  
pp. 946-958 ◽  
Author(s):  
Isabel Alves ◽  
Miguel Arenas ◽  
Mathias Currat ◽  
Anna Sramkova Hanulova ◽  
Vitor C. Sousa ◽  
...  

2020 ◽  
Author(s):  
Thomas L Schmidt ◽  
T. Swan ◽  
Jessica Chung ◽  
Stephan Karl ◽  
Samuel Demok ◽  
...  

AbstractPopulation genomic approaches can characterise dispersal across a single generation through to many generations in the past, bridging the gap between individual movement and intergenerational gene flow. These approaches are particularly useful when investigating dispersal in recently altered systems, where they provide a way of inferring long-distance dispersal between newly established populations and their interactions with existing populations. Human-mediated biological invasions represent such altered systems which can be investigated with appropriate study designs and analyses. Here we apply temporally-restricted sampling and a range of population genomic approaches to investigate dispersal in a 2004 invasion of Aedes albopictus (the Asian tiger mosquito) in the Torres Strait Islands (TSI) of Australia. We sampled mosquitoes from 13 TSI villages simultaneously and genotyped 373 mosquitoes at genome-wide single nucleotide polymorphisms (SNPs): 331 from the TSI, 36 from Papua New Guinea (PNG), and 4 incursive mosquitoes detected in uninvaded regions. Within villages, spatial genetic structure varied substantially but overall displayed isolation by distance and a neighbourhood size of 232–577. Close kin dyads revealed recent movement between islands 31–203 km apart, and deep learning inferences showed incursive Ae. albopictus had travelled to uninvaded regions from both adjacent and non-adjacent islands. Private alleles and a coancestry matrix indicated direct gene flow from PNG into nearby islands. Outlier analyses also detected four linked alleles introgressed from PNG, with the alleles surrounding 12 resistance-associated cytochrome P450 genes. By treating dispersal as both an intergenerational process and a set of discrete events, we describe a highly interconnected invasive system.


2020 ◽  
Author(s):  
Aaliyah D. Wright ◽  
Nicole L. Garrison ◽  
Ashantye’ S. Williams ◽  
Paul D. Johnson ◽  
Nathan V. Whelan

AbstractMany freshwater gastropod species face extinction, including 79% of species in the family Pleuroceridae. The Oblong Rocksnail, Leptoxis compacta, is a narrow range endemic pleurocerid from the Cahaba River basin in central Alabama that has seen rapid range contraction in the last 100 years. Such a decline is expected to negatively affect genetic diversity in the species. However, precise patterns of genetic variation and gene flow across the restricted range of L. compacta are unknown. This lack of information limits our understanding of human impacts on the Cahaba River system and Pleuroceridae. Here, we show that L. compacta has likely seen a species-wide decline in genetic diversity, but remaining populations have relatively high genetic diversity. We also report a contemporary range extension compared to the last published survey. Leptoxis compacta does not display an isolation by distance pattern, contrasting patterns seen in many riverine taxa. Our findings also indicate that historical range contraction has resulted in the absence of common genetic patterns seen in many riverine taxa like isolation by distance as the small distribution of L. compacta allows for relatively unrestricted gene flow across its remaining range despite limited dispersal abilities. Two collection sites had higher genetic diversity than others, and broodstock sites for future captive propagation and reintroduction efforts should utilize sites identified here as having the highest genetic diversity. Broadly, our results support the hypothesis that range contraction will result in the reduction of species-wide genetic diversity, and common riverscape genetic patterns cannot be assumed to be present in species facing extinction risk.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9789
Author(s):  
Aaliyah D. Wright ◽  
Nicole L. Garrison ◽  
Ashantye’ S. Williams ◽  
Paul D. Johnson ◽  
Nathan V. Whelan

Many freshwater gastropod species face extinction, including 79% of species in the family Pleuroceridae. The Oblong Rocksnail, Leptoxis compacta, is a narrow range endemic pleurocerid from the Cahaba River basin in central Alabama that has seen rapid range contraction in the last 100 years. Such a decline is expected to negatively affect genetic diversity in the species. However, precise patterns of genetic variation and gene flow across the restricted range of L. compacta are unknown. This lack of information limits our understanding of human impacts on the Cahaba River system and Pleuroceridae. Here, we show that L. compacta has likely seen a species-wide decline in genetic diversity, but remaining populations have relatively high genetic diversity. We also report a contemporary range extension compared to the last published survey. Our findings indicate that historical range contraction has resulted in the absence of common genetic patterns seen in many riverine taxa like isolation by distance as the small distribution of L. compacta allows for relatively unrestricted gene flow across its remaining range despite limited dispersal abilities. Two collection sites had higher genetic diversity than others, and broodstock sites for future captive propagation and reintroduction efforts should utilize sites identified here as having the highest genetic diversity. Broadly, our results support the hypothesis that range contraction will result in the reduction of species-wide genetic diversity, and common riverscape genetic patterns cannot be assumed to be present in species facing extinction risk.


2019 ◽  
Vol 115 (7/8) ◽  
Author(s):  
Damian W. Ponsonby ◽  
M. Thabang Madisha ◽  
Schwaibold Schwaibold ◽  
Desiré L. Dalton

Genetic diversity is the basis of the evolutionary potential of species to respond to environmental changes. However, restricting the movement of species can result in populations becoming less connected which can reduce gene flow and can subsequently result in a loss of genetic diversity. Urban expansion can lead to the fragmentation of habitats which affects the ability of species to move freely between areas. In this study, the genetic diversity of the African clawless otter (Aonyx capensis) in Gauteng (South Africa) was assessed using non-invasive sampling techniques. DNA was extracted from spraint (faecal) samples collected along nine rivers and genotyped using 10 microsatellites to assess population structure and genetic diversity. Samples were grouped based on locality and by catchment to determine whether isolated subpopulations exist. Genetic diversity of A. capensis in Gauteng was found to be low (mean observed heterozygosity (Ho)=0.309). Analysis of genetic structure provides support for the otter populations being panmictic with high gene flow between populations from different rivers. Results from the study indicate that the movement of A. capensis is not affected by physical barriers in urbanised areas. However, because the genetic diversity of the species in the study area is low, these animals may not be able to cope with future environmental changes.


2020 ◽  
Vol 108 (1) ◽  
Author(s):  
A. Kreitschitz ◽  
E. Haase ◽  
S. N. Gorb

AbstractMyxodiaspory (formation of mucilage envelope around seeds and fruits) is a common adaptation to dry habitats known in many families of Angiosperms. The mucilage envelope of some seeds seems to be also a unique morphological adaptation which protects myxospermatic diaspores while passing through the bird’s digestive system. To evaluate the protective potential of mucilage, we fed the diaspores of seven plant species (representing three different mucilage types and three species of non-mucilaginous plants) to pigeons, Columba livia domestica. Twenty-four hours later, we collected the droppings of pigeons and examined a total of 18,900 non-destroyed diaspores to check for mucilage presence and germination ability. Out of all the examined diaspores, 4.5% were mucilaginous seeds. Among them, the highest number (12.2–13.5%) of viable diaspores belonged to the hemicellulosic type of mucilage (from Plantago species). Only 3.7% of germinating diaspores with pectic mucilage (Linum usitatissimum) were collected, and no seeds representing cellulosic mucilage (e.g., Ocimum basilicum). For non-mucilaginous plants, we collected only a few individual seeds (0.1% out of 8100 seeds used). We noted that the mucilaginous seeds found in the droppings were able to germinate; however, the germination ability was generally smaller in comparison to the control (i.e., not digested) seeds. Our results revealed that the presence of mucilage envelope has an impact on diaspore dispersal and survivability. With our experiments, we demonstrated for the first time that the mucilage envelope, especially of the non-cellulosic type, supports endozoochory. We also showed that non-mucilaginous seeds can be occasionally dispersed via endozoochory and are able to germinate. The results of our studies can explain the ways of plants distribution at a small, local scale as well as in long-distance dispersal, e.g., between islands or even continents.


Sign in / Sign up

Export Citation Format

Share Document