fungal plant pathogens
Recently Published Documents


TOTAL DOCUMENTS

343
(FIVE YEARS 124)

H-INDEX

41
(FIVE YEARS 5)

2022 ◽  
Vol 5 ◽  
Author(s):  
Gabriela Cabrales-Orona ◽  
Norma Martínez-Gallardo ◽  
John Paul Délano-Frier

The functional characterization of an Amaranthus hypochondriacus Natterin-4-Like-1 gene (AhN4L-1) coding for an unknown function protein characterized by the presence of an aerolysin-like pore-forming domain in addition to two amaranthin-like agglutinin domains is herewith described. Natterin and nattering-like proteins have been amply described in the animal kingdom. However, the role of nattering-like proteins in plants is practically unknown. The results described in this study, obtained from gene expression data in grain amaranth and from AhN4L-1-overexpressing Arabidopsis thaliana plants indicated that this gene was strongly induced by several biotic and abiotic conditions in grain amaranth, whereas data obtained from the overexpressing Arabidopsis plants further supported the defensive function of this gene, mostly against bacterial and fungal plant pathogens. GUS and GFP AhN4L-1 localization in roots tips, leaf stomata, stamens and pistils also suggested a defensive function in these organs, although its participation in flowering processes, such as self-incompatibility and abscission, is also possible. However, contrary to expectations, the overexpression of this gene negatively affected the vegetative and reproductive growth of the transgenic plants, which also showed no increased tolerance to salinity and water-deficit stress. The latter despite the maintenance of significantly higher chlorophyll levels and photosynthetic parameters under intense salinity stress. These results are discussed in the context of the physiological roles known to be played by related lectins and AB proteins in plants.


2022 ◽  
Author(s):  
Magdalena Śwecimska ◽  
Patrycja Golinska ◽  
Michael Goodfellow

Abstract A genomic-based polyphasic study was undertaken to establish the taxonomic status and biotechnological and ecological potential of a Streptomyces strain, isolate SF28T, that was recovered from the litter layer in a polish Pinus sylvestris forest. The isolate had morphological characteristics and chemotaxonomic properties consistent with its classification in the genus Streptomyces. It formed long straight chains of spores with smooth surfaces, contained LL-diaminopimelic acid and glucose and ribose in whole-organism hydrolysates, produced major proportions of straight, iso- and anteiso- fatty acids, hexa- and octa-hydrogenated menaquinones with nine isoprenoid units and had a polar lipid pattern composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylmethylethanolamine, glycophospholipids and three uncharacterized components. Phylogenetic trees prepared using 16S rRNA gene and multilocus gene sequences of conserved housekeeping genes showed that the isolate formed a branch that was loosely associated with the type strains of several validly published Streptomyces species. A draft genome generated for the isolate was rich in natural product-biosynthetic gene clusters with the potential to produce new specialised metabolites, notably antibiotics, and stress related genes which provide an insight into how they may have adapted to the harsh conditions that prevail in acidic forest soils. A phylogenomic tree based on the genomes of the isolate and its phylogenetic neighbours confirmed that it formed a distinct lineage well separated from its closest evolutionary relatives. The isolate shared low average nucleotide index and digital DNA:DNA hybridization values with its phylogenomic neighbours and was also distinguished from them using a combination of cultural and micromorphological properties. Given this wealth of taxonomic data it is proposed that isolate SF28T (=DSM 113360T=PCM 3163T) be classified in the genus Streptomyces as Streptomyces pinistramenti sp. nov. The isolate showed pronounced antimicrobial activity, especially against fungal plant pathogens.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Darcy A. B. Jones ◽  
Lina Rozano ◽  
Johannes W. Debler ◽  
Ricardo L. Mancera ◽  
Paula M. Moolhuijzen ◽  
...  

2021 ◽  
Author(s):  
Christopher A Brosnan ◽  
Anne Sawyer ◽  
Filipe Fenselau Felippes ◽  
Bernard J Carroll ◽  
Peter M Waterhouse ◽  
...  

Topical application of double-stranded RNA (dsRNA) as RNA interference(RNAi) based biopesticides represents a sustainable alternative to traditional transgenic, breeding-based or chemical crop protection strategies. A key feature of RNAi is its ability to act non-cell autonomously, a process that plays a critical role in plant protection. However, the uptake of dsRNA upon topical application, and its ability to move and act non-cell autonomously remains debated and largely unexplored. Here we show that when applied to a leaf, unprocessed full-length dsRNA enters the vasculature and rapidly moves to multiple distal below ground, vegetative and reproductive tissue types in several model plant and crop hosts. Intact unprocessed dsRNA was detected in the apoplast of leaves, roots and flowers after leaf application and maintained in subsequent new growth. Furthermore, we show mobile dsRNA is functional against root infecting fungal and foliar viral pathogens. Our demonstration of the uptake and maintained movement of intact and functional dsRNA stands to add significant benefit to the emerging field of RNAi-based plant protection.


2021 ◽  
pp. 33-86
Author(s):  
Wagner Bettiol ◽  
◽  
Flávio Henrique Vasconcelos de Medeiros ◽  
Josiane Barros Chiaramonte ◽  
Rodrigo Mendes ◽  
...  

The success of a biological control programme depends on the isolation and selection of antagonists. There is an enormous diversity of culturable microbial species in the soil, rhizosphere, phylloplane, spermosphere and carposphere, which can be used in the isolation and selection of antagonists. The structures of fungal plant pathogens concerned with survival and infection may also be sources of antagonists. Although non-culturable microorganisms and microbiome-based strategies have great potential for development as commercial products in disease control, more knowledge is needed to understand the mechanisms involved in interactions between plants and complex microbial communities. Methods of isolation and selection of the most commercially exploited groups of antagonists and their advantages and disadvantages are discussed in this chapter as well as those of non-traditional antagonists. Finally, possible strategies for engineering the soil and host microbiome to actively promote plant protection against pathogens are discussed.


2021 ◽  
Vol 7 (11) ◽  
pp. 977
Author(s):  
Donovan Garcia-Ceron ◽  
Rohan G. T. Lowe ◽  
James A. McKenna ◽  
Linda M. Brain ◽  
Charlotte S. Dawson ◽  
...  

Fusarium graminearum (Fgr) is a devastating filamentous fungal pathogen that causes diseases in cereals, while producing mycotoxins that are toxic for humans and animals, and render grains unusable. Low efficiency in managing Fgr poses a constant need for identifying novel control mechanisms. Evidence that fungal extracellular vesicles (EVs) from pathogenic yeast have a role in human disease led us to question whether this is also true for fungal plant pathogens. We separated EVs from Fgr and performed a proteomic analysis to determine if EVs carry proteins with potential roles in pathogenesis. We revealed that protein effectors, which are crucial for fungal virulence, were detected in EV preparations and some of them did not contain predicted secretion signals. Furthermore, a transcriptomic analysis of corn (Zea mays) plants infected by Fgr revealed that the genes of some of the effectors were highly expressed in vivo, suggesting that the Fgr EVs are a mechanism for the unconventional secretion of effectors and virulence factors. Our results expand the knowledge on fungal EVs in plant pathogenesis and cross-kingdom communication, and may contribute to the discovery of new antifungals.


2021 ◽  
Author(s):  
Pierre M Joubert ◽  
Ksenia V Krasileva

One of the ways genomes respond to stress is by shedding extrachromosomal circular DNAs (eccDNAs). EccDNAs can contain genes and dramatically increase their copy number. They can also reinsert into the genome, generating structural variation. They have been shown to provide a source of phenotypic and genotypic plasticity in several species. However, whole-circularome studies have so far been limited to a few model organisms. Fungal plant pathogens are a serious threat to global food security in part because of their rapid adaptation to disease prevention strategies. Understanding the mechanisms fungal pathogens use to escape disease control is paramount to curbing their threat. We present a whole circularome sequencing study of the rice blast pathogen Magnaporthe oryzae. We find that M. oryzae has a highly diverse circularome containing many genes and showing evidence of large LTR retrotransposon activity. We find that genes enriched on eccDNAs in M. oryzae occur in genomic regions prone to presence-absence variation and that disease associated genes are frequently on eccDNAs. Finally, we find that a subset of genes is never present on eccDNAs, which indicates that the presence of these genes on eccDNAs is selected against.


Sign in / Sign up

Export Citation Format

Share Document