scholarly journals P035 NUDT15 variance increases DNA-incorporated thiopurine metabolites and lymphocyte apoptosis in patients with inflammatory bowel disease

2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S149-S150
Author(s):  
H Kiyohara ◽  
T Toyonaga ◽  
S Kuronuma ◽  
A Ueno ◽  
S Okabayashi ◽  
...  

Abstract Background A novel thiopurine metabolizing enzyme, nucleotide diphosphate-linked moiety X-type motif 15 (NUDT15) was associated with drug-induced leukopenia in patients with non-synonymous genetic polymorphisms. Thiopurine-induced leukopenia in Japanese patients with genetic variance in NUDT15 (c.415C>T) appears to be independent of the 6-thioguanine nucleotide concentration in red blood cells. However, detailed molecular mechanism how NUDT15 variance causes thiopurine-induced leukopenia remains unclear and NUDT15-associated subcellular thiopurine metabolism has not been investigated in patients with inflammatory bowel diseases (IBD). Methods DNA-incorporated deoxythioguanosine (dTG) was measured in the peripheral blood mononuclear cells (PBMCs) of Japanese patients with IBD under thiopurine treatment. Association of a single-nucleotide polymorphism for NUDT15 (c.415C>T) with dTG in PBMCs (dTGPBMC) was examined. Peripheral blood T lymphocytes were cultured in vitro with 6-thioguanine (6-TG) to examine the Impact of NUDT15 genotypes on incorporation into DNA, cell proliferation and apoptosis. Results NUDT15 variants had significantly higher dTGPBMC per thiopurine dosage than non-variants (homozygous variants (TT) vs. heterozygous variants (CT) vs. non-variants (CC), 4418.0 vs. 663.0 vs. 295.3 dTG mol/106 moles dA per mg/kg/day of 6-MP (Figure A)). dTGPBMC and peripheral lymphocyte counts showed a negative correlation (r = −0.30, p = 0.015) (Figure B). Peripheral blood lymphocytes from patients with NUDT15 variance showed a higher DNA-incorporated dTG associated with increased apoptosis (increase of Annexin V+ PI+ CD4+ lymphocytes; TT vs. CT vs. CC, 158.5 % vs. 80.1 % vs. 57.9 % (p = 0.0427)) (Figure C) and decreased proliferation (decrease of proliferative CD4+ lymphocytes, TT vs. CT vs. CC, 49.0 % vs. 25.0 % vs. 19.1 % (p = 0.0098)) (Figure D) when cultured with 6-thioguanine in vitro. Conclusion DNA-incorporated dTG affected by NUDT15 genotypes induces T lymphocyte apoptosis in patients with IBD.

2020 ◽  
Vol 21 (22) ◽  
pp. 8569
Author(s):  
Layla Panahipour ◽  
Zahra Kargarpour ◽  
Maria Laggner ◽  
Michael Mildner ◽  
Hendrik J. Ankersmit ◽  
...  

Osteoclastogenesis required for bone remodeling is also a key pathologic mechanism of inflammatory osteolysis being controlled by paracrine factors released from dying cells. The secretome of irradiated, dying peripheral blood mononuclear cells (PBMCs) has a major impact on the differentiation of myeloid cells into dendritic cells, and macrophage polarization. The impact on osteoclastogenesis, however, has not been reported. For this aim, we used murine bone marrow macrophages exposed to RANKL and M-CSF to initiate osteoclastogenesis, with and without the secretome obtained from γ-irradiated PBMCs. We reported that the secretome significantly enhanced in vitro osteoclastogenesis as determined by means of histochemical staining of the tartrate-resistant acid phosphatase (TRAP), as well as the expression of the respective target genes, including TRAP and cathepsin K. Considering that TGF-β enhanced osteoclastogenesis, we confirmed the TGF-β activity in the secretome with a bioassay that was based on the increased expression of IL11 in fibroblasts. Neutralizing TGF-β by an antibody decreased the ability of the secretome to support osteoclastogenesis. These findings suggested that TGF-β released by irradiated PBMCs could enhance the process of osteoclastogenesis in vitro.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1037
Author(s):  
Patricia Ruiz-Limon ◽  
Maria L. Ladehesa-Pineda ◽  
Clementina Lopez-Medina ◽  
Chary Lopez-Pedrera ◽  
Maria C. Abalos-Aguilera ◽  
...  

Endothelial dysfunction (ED) is well known as a process that can lead to atherosclerosis and is frequently presented in radiographic axial spondyloarthritis (r-axSpA) patients. Here, we investigated cellular and molecular mechanisms underlying r-axSpA-related ED, and analyzed the potential effect of peripheral blood mononuclear cells (PBMCs) in promoting endothelial injury in r-axSpA. A total of 30 r-axSpA patients and 32 healthy donors (HDs) were evaluated. The endothelial function, inflammatory and atherogenic profile, and oxidative stress were quantified. In vitro studies were designed to evaluate the effect of PBMCs from r-axSpA patients on aberrant endothelial activation. Compared to HDs, our study found that, associated with ED and the plasma proatherogenic profile present in r-axSpA, PBMCs from these patients displayed a pro-oxidative, proinflammatory, and proatherogenic phenotype, with most molecular changes noticed in lymphocytes. Correlation studies revealed the relationship between this phenotype and the microvascular function. Additional in vitro studies confirmed that PBMCs from r-axSpA patients promoted endothelial injury. Altogether, this study suggests the relevance of r-axSpA itself as a strong and independent cardiovascular risk factor, contributing to a dysfunctional endothelium and atherogenic status by aberrant activation of PBMCs. Lymphocytes could be the main contributors in the development of ED and subsequent atherosclerosis in this pathology.


2021 ◽  
Vol 134 ◽  
pp. 58-63
Author(s):  
Matheus Fujimura Soares ◽  
Larissa Martins Melo ◽  
Jaqueline Poleto Bragato ◽  
Amanda de Oliveira Furlan ◽  
Natália Francisco Scaramele ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document