scholarly journals Noncrop Habitat Use by Wild Bees (Hymenoptera: Apoidea) in a Mixed-Use Agricultural Landscape

2020 ◽  
Vol 49 (2) ◽  
pp. 502-515 ◽  
Author(s):  
Brianne Du Clos ◽  
Francis A Drummond ◽  
Cynthia S Loftin

Abstract Homogeneous, agriculturally intense landscapes have abundant records of pollinator community research, though similar studies in the forest-dominated, heterogeneous mixed-use landscape that dominates the northeastern United States are sparse. Trends of landscape effects on wild bees are consistent across homogeneous agricultural landscapes, whereas reported studies in the northeastern United States have not found this consistency. Additionally, the role of noncrop habitat in mixed-use landscapes is understudied. We assessed wild bee communities in the mixed-use lowbush blueberry (Vaccinium angustifolium Ait.) production landscape of Maine, United States at 56 sites in eight land cover types across two regional landscapes and analyzed effects of floral resources, landscape pattern, and spatial scale on bee abundance and species richness. Within survey sites, cover types with abundant floral resources, including lowbush blueberry fields and urban areas, promoted wild bee abundance and diversity. Cover types with few floral resources such as coniferous and deciduous/mixed forest reduced bee abundance and species richness. In the surrounding landscape, lowbush blueberry promoted bee abundance and diversity, while emergent wetland and forested land cover strongly decreased these measures. Our analysis of landscape configuration revealed that patch mixing can promote wild bee abundance and diversity; however, this was influenced by strong variation across our study landscape. More surveys at intra-regional scales may lead to better understanding of the influence of mixed-use landscapes on bee communities.

2020 ◽  
Vol 49 (6) ◽  
pp. 1437-1448 ◽  
Author(s):  
Gabriel G Foote ◽  
Nathaniel E Foote ◽  
Justin B Runyon ◽  
Darrell W Ross ◽  
Christopher J Fettig

Abstract The status of wild bees has received increased interest following recent estimates of large-scale declines in their abundances across the United States. However, basic information is limited regarding the factors affecting wild bee communities in temperate coniferous forest ecosystems. To assess the early responses of bees to bark beetle disturbance, we sampled the bee community of a Douglas-fir, Pseudotsuga menziesii (Mirb.), forest in western Idaho, United States during a Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins (Coleoptera: Curculionidae), outbreak beginning in summer 2016. We resampled the area in summer 2018 following reductions in forest canopy cover resulting from mortality of dominant and codominant Douglas-fir. Overall, results from rarefaction analyses indicated significant increases in bee diversity (Shannon’s H) in 2018 compared to 2016. Results from ANOVA also showed significant increases in bee abundance and diversity in 2018 compared to 2016. Poisson regression analyses revealed percent tree mortality from Douglas-fir beetle was positively correlated with increases in total bee abundance and species richness, where community response variables displayed a cubic trend with percent tree mortality. Percent reduction in canopy cover from 2016 to 2018 was also correlated with bee species richness and diversity. These findings suggest that wild bee communities may benefit from changes in forest structure following bark beetle outbreaks.


2015 ◽  
Vol 25 (8) ◽  
pp. 2119-2131 ◽  
Author(s):  
Neal M. Williams ◽  
Kimiora L. Ward ◽  
Nathaniel Pope ◽  
Rufus Isaacs ◽  
Julianna Wilson ◽  
...  

2015 ◽  
Vol 113 (1) ◽  
pp. 140-145 ◽  
Author(s):  
Insu Koh ◽  
Eric V. Lonsdorf ◽  
Neal M. Williams ◽  
Claire Brittain ◽  
Rufus Isaacs ◽  
...  

Wild bees are highly valuable pollinators. Along with managed honey bees, they provide a critical ecosystem service by ensuring stable pollination to agriculture and wild plant communities. Increasing concern about the welfare of both wild and managed pollinators, however, has prompted recent calls for national evaluation and action. Here, for the first time to our knowledge, we assess the status and trends of wild bees and their potential impacts on pollination services across the coterminous United States. We use a spatial habitat model, national land-cover data, and carefully quantified expert knowledge to estimate wild bee abundance and associated uncertainty. Between 2008 and 2013, modeled bee abundance declined across 23% of US land area. This decline was generally associated with conversion of natural habitats to row crops. We identify 139 counties where low bee abundances correspond to large areas of pollinator-dependent crops. These areas of mismatch between supply (wild bee abundance) and demand (cultivated area) for pollination comprise 39% of the pollinator-dependent crop area in the United States. Further, we find that the crops most highly dependent on pollinators tend to experience more severe mismatches between declining supply and increasing demand. These trends, should they continue, may increase costs for US farmers and may even destabilize crop production over time. National assessments such as this can help focus both scientific and political efforts to understand and sustain wild bees. As new information becomes available, repeated assessments can update findings, revise priorities, and track progress toward sustainable management of our nation’s pollinators.


2019 ◽  
pp. 1-34 ◽  
Author(s):  
Tracy A. Zarrillo ◽  
Kimberly A. Stoner

 With growing evidence of changes in local abundance, geographical range, and species diversity of wild bees, it is imperative to document wild bee communities in representative habitats throughout North America. The Connecticut shoreline has historically been subject to many natural and anthropogenic disturbances, and there is a lack of baseline data regarding bee biodiversity in Connecticut’s maritime habitats. In this study, we characterize the wild bee fauna of a discrete maritime habitat in Connecticut, USA, and examine salt-marsh, beach dune, and coastal scrub bee communities adjacent to Long Island Sound. Patterns found are discussed in relation to recent coastal surveys in New England. Biweekly surveys were conducted at Grass Island (Guilford, CT) over a two-year period (2011-2012) using pan traps and effort-based (timed) net collecting from flowers. A total of 3928 individual bees were collected, representing five families, 18 genera and at least 80 species. Floral records for 374 individuals resulted in associations of 35 bee species with 19 species of flowers. Seventy percent of the bees captured in the net survey were visiting alien plants, with the exotic Rosa rugosa Thunb. having the highest level of bee diversity and relative abundance. The total number of bee species collected in this survey represents approximately 23% of the known Connecticut fauna, including four specialists associated with coastal and wetland habitats. The abundance and diversity of bees visiting alien plants on Grass Island, as well as the occurrence of these sand specialists, may prove to be of conservation concern as the Connecticut shoreline continues to be altered.  


Insects ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 26 ◽  
Author(s):  
Juan Sanchez ◽  
Aline Carrasco ◽  
Michelangelo La Spina ◽  
María Pérez-Marcos ◽  
F. Ortiz-Sánchez

(1) Intensive agriculture has a high impact on pollinating insects, and conservation strategies targeting agricultural landscapes may greatly contribute to their maintenance. The aim of this work was to quantify the effect that the vegetation of crop margins, with either herbaceous or shrubby plants, had on the abundance and diversity of bees in comparison to non-restored margins. (2) The work was carried out in an area of intensive agriculture in southern Spain. Bees were monitored visually and using pan traps, and floral resources were quantified in crop margins for two years. (3) An increase in the abundance and diversity of wild bees in restored margins was registered, compared to non-restored margins. Significant differences in the structure of bee communities were found between shrubby and herbaceous margins. Apis mellifera and mining bees were found to be more polylectic than wild Apidae and Megachilidae. The abundance of A. mellifera and mining bees was correlated to the total floral resources, in particular, to those offered by the Boraginaceae and Brassicaceae; wild Apidae and Megachilidae were associated with the Lamiaceae. (4) This work emphasises the importance of floral diversity and shrubby plants for the maintenance of rich bee communities in Mediterranean agricultural landscapes.


2020 ◽  
Vol 65 (1) ◽  
pp. 39-56 ◽  
Author(s):  
Alexandra Harmon-Threatt

Nest site availability and quality are important for maintaining robust populations and communities of wild bees. However, for most species, nesting traits and nest site conditions are poorly known, limiting both our understanding of basic ecology for bee species and conservation efforts. Additionally, many of the threats commonly associated with reducing bee populations have effects that can extend into nests but are largely unstudied. In general, threats such as habitat disturbances and climate change likely affect nest site availability and nest site conditions, which in turn affect nest initiation, growth, development, and overwintering success of bees. To facilitate a better understanding of how these and other threats may affect nesting bees, in this review, I quantify key nesting traits and environmental conditions and then consider how these traits may intersect with observed and anticipated changes in nesting conditions experienced by wild bees. These data suggest that the effects of common threats to bees through nesting may strongly influence their survival and persistence but are vastly understudied. Increasing research into nesting biology and incorporating nesting information into conservation efforts may help improve conservation of this declining but critical group.


2021 ◽  
Author(s):  
Nicole Beyer ◽  
Felix Kirsch ◽  
Doreen Gabriel ◽  
Catrin Westphal

Abstract Context Pollinator declines and functional homogenization of farmland insect communities have been reported. Mass-flowering crops (MFC) can support pollinators by providing floral resources. Knowledge about how MFC with dissimilar flower morphology affect functional groups and functional trait compositions of wild bee communities is scarce. Objective We investigated how two morphologically different MFC, land cover and local flower cover of semi-natural habitats (SNH) and landscape diversity affect wild bees and their functional traits (body size, tongue length, sociality, foraging preferences). Methods We conducted landscape-level wild bee surveys in SNH of 30 paired study landscapes covering an oilseed rape (OSR) (Brassica napus L.) gradient. In 15 study landscapes faba beans (Vicia faba L.) were grown, paired with respective control landscapes without grain legumes. Results Faba bean cultivation promoted bumblebees (Bombus spp. Latreille), whereas non-Bombus densities were only driven by the local flower cover of SNH. High landscape diversity enhanced wild bee species richness. Faba bean cultivation enhanced the proportions of social wild bees, bees foraging on Fabaceae and slightly of long-tongued bumblebees. Solitary bee proportions increased with high covers of OSR. High local SNH flower covers mitigated changes of mean bee sizes caused by faba bean cultivation. Conclusions Our results show that MFC support specific functional bee groups adapted to their flower morphology and can alter pollinators` functional trait composition. We conclude that management practices need to target the cultivation of functionally diverse crops, combined with high local flower covers of diverse SNH to create heterogeneous landscapes, which sustain diverse pollinator communities.


2014 ◽  
Vol 83 (4) ◽  
pp. 325-351 ◽  
Author(s):  
Józef Banaszak ◽  
Halina Ratyńska

ABSTRACT Changes in communities of wild bees (Apiformes) were studied in relation to changes in vegetation in six permanent plots (natural forest habitats in the Wielkopolska National Park, and semi-natural habitats in the agricultural landscape near Turew) at the end of four decades (starting from the late 1970s). In 2008-2010, as many as 100 species of Apiformes were recorded there, which is more than reported in earlier decades. The most stable bee communities were those in forest habitats (oak-hornbeam forest, oak forest). Substantial qualitative and quantitative changes in vegetation and bee communities were recorded only after the renaturalisation of a former xerothermic grassland, which had become overgrown with shrubs and trees as a result of plant succession. Human interference (e.g. the felling of some trees growing along a road, clearance of understorey shrubs, ploughing of roadside margins) at selected refuge habitats in the agricultural landscape led to short-term fluctuations in bee abundance and diversity, but an increasing trend in abundance was noted.


2019 ◽  
Vol 23 (5-6) ◽  
pp. 819-830 ◽  
Author(s):  
Rachel N. Nichols ◽  
Dave Goulson ◽  
John M. Holland

Abstract Governmental agri-environment schemes (AES) aim to improve pollinator abundance and diversity on farmland by sowing wildflower seed mixes. These often contain high proportions of Fabaceae, particularly Trifolium (clovers), which are attractive to some bumblebee species, but not to most of the ~ 240 solitary bee species in the UK. Here we identify wildflowers that are attractive to a greater range of wild bee species. Forty-five wildflower species being farmed for commercial seed production on a single farm were surveyed for native bees. Bee walks were conducted through discrete wildflower areas from April until August in 2018. The results indicate that including a range of Apiaceae, Asteraceae, and Geraniaceae in seed mixes would cater for a wide diversity of bee species. A total of 14 wildflower species across nine families attracted 37 out of the 40 bee species recorded on the farm, and accounted for 99.7% of all visitations. Only two of these 14 species are included in current AES pollinator mixes. Unexpectedly, few visits were made by bumblebees to Trifolium spp. (0.5%), despite their being considered an important food source for bumblebees, while Anthyllis vulneraria and Geranium pratense were highly attractive. For solitary bees, Crepis capillaris, Sinapsis arvensis, Convolvulus arvensis and Chaerophyllum temulum were amongst the best performing species, none of which are usually included in sown flower mixes. We suggest that the standard ‘pollinator’ mixes used in AES might be updated to include some of these wildflower species, and trialled as seed mixes on farmland.


Sign in / Sign up

Export Citation Format

Share Document