douglas fir
Recently Published Documents


TOTAL DOCUMENTS

4184
(FIVE YEARS 181)

H-INDEX

93
(FIVE YEARS 4)

Author(s):  
Kong Yue ◽  
Jinhao Wu ◽  
Feng Wang ◽  
Zhangjing Chen ◽  
Weidong Lu

2022 ◽  
Vol 9 ◽  
Author(s):  
Thomas J. Rodengen ◽  
Marlow G. Pellatt ◽  
Karen E. Kohfeld

Paleoecological investigation of two montane lakes in the Kootenay region of southeast British Columbia, Canada, reveal changes in vegetation in response to climate and fire throughout the Holocene. Pollen, charcoal, and lake sediment carbon accumulation rate analyses show seven distinct zones at Marion Lake, presently in the subalpine Engelmann Spruce-Subalpine Fir (ESSF) biogeoclimatic (BEC) zone of Kootenay Valley, British Columbia. Comparison of these records to nearby Dog Lake of Kootenay National Park of Canada in the Montane Spruce (MS) BEC zone of Kootenay Valley, British Columbia reveals unique responses of ecosystems in topographically complex regions. The two most dramatic shifts in vegetation at Marion Lake occur firstly in the early Holocene/late Pleistocene in ML Zone 3 (11,010–10,180 cal. yr. B.P.) possibly reflecting Younger Dryas Chronozone cooling followed by early Holocene xerothermic warming noted by the increased presence of the dry adapted conifer, Douglas-fir (Pseudotsuga menziesii) and increasing fire frequency. The second most prominent change occurred at the transition from ML Zone 5 through 6a (∼2,500 cal. yr. B.P.). This zone transitions from a warmer to a cooler/wetter climate as indicated by the increase in western hemlock (Tsuga heterophylla) and subsequent drop in fire frequency. The overall cooling trend and reduction in fire frequency appears to have occurred ∼700 years later than at Dog Lake (∼43 km to the south and 80 m lower in elevation), resulting in a closed montane spruce forest, whereas Marion Lake developed into a subalpine ecosystem. The temporal and ecological differences between the two study sites likely reflects the particular climate threshold needed to move these ecosystems from developed forests to subalpine conditions, as well as local site climate and fire conditions. These paleoecological records indicate future warming may result in the MS transitioning into an Interior Douglas Fir (IDF) dominated landscape, while the ESSF may become more forested, similar to the modern MS, or develop into a grassland-like landscape dependent on fire frequency. These results indicate that climate and disturbance over a regional area can dictate very different localized vegetative states. Local management implications of these dynamic landscapes will need to understand how ecosystems respond to climate and disturbance at the local or ecosystem/habitat scale.


Trees ◽  
2022 ◽  
Author(s):  
D. A. Jones ◽  
C. A. Harrington ◽  
J. B. St. Clair

2022 ◽  
Vol 68 (1) ◽  
Author(s):  
Eun-Suk Jang ◽  
Chun-Won Kang

AbstractThis study investigated changes in the sound absorption coefficients of three anatomical sections of cubed spruce (Picea sitchensis), Douglas fir (Pseudotsuga menziesii), and larch (Larix kaempferi) after microwave treatment. Microwave treatment at 1000 W and 2.4 GHz for 20 min increased the sound absorption coefficients (at 2000–5000 Hz) of spruce by 6.9% in the transverse section, 20.0% in the radial section, and 31.7% in the tangential section. The sound absorption coefficients of Douglas fir increased by 28.9% in the transverse section, 19.1% in the radial section, and 50.0% in the tangential section. Larch coefficients increased by 16.7% in the transverse section, 37.2% in the radial section, and 38.8% in the tangential section. The sound absorption coefficients of the softwoods differed according to species and anatomical plane after microwave treatment. It was concluded that changes in the measured sound absorption coefficient indicate alteration in the pore structure of wood, which can affect in turn wood permeability and impregnation. These data will be helpful for predicting the permeability and impregnation of wood after microwave treatment.


2022 ◽  
Vol 503 ◽  
pp. 119767
Author(s):  
Esther R. Frei ◽  
Barbara Moser ◽  
Thomas Wohlgemuth

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1766
Author(s):  
Marta Damszel ◽  
Hanna Szmidla ◽  
Katarzyna Sikora ◽  
Agata Młodzińska ◽  
Sławomir Piętka ◽  
...  

The mycobiota of the fine roots of Pseudotsuga menziesii were studied as a measure of the adaptation of this alien species to new soil and climatic conditions. We hypothesized that after approximately 130 years of growth in a given habitat, the fungal community colonizing the fine roots of introduced trees would resemble the biota of Pinus sylvestris and Fagus sylvatica in surrounding stands of similar age and site conditions. The genetic material isolated from the fine roots was subjected to metagenomic analysis. We recorded 33, 97 and 95 OTUs exclusively from root samples of Douglas fir, beech and pine, respectively; 124 were common to all sample types. The biota from the roots of P. menziesii featured a less diverse taxonomic composition and were characterized by the highest proportion of symbiotrophs (71.8%) versus saprothrophs (5.6%) and pathogens (0.24%). Some fungal taxa (19) in the roots of P. menziesii were common with the biota in the roots of other adjacent trees, while some (7) were unique to Douglas fir. Our results indicate a locally differentiated strategy of naturalness of fungi inhabiting soil and roots of P. menziesii, although 130 years have passed since the introduction of the species.


2021 ◽  
Author(s):  
John Tappeiner ◽  
Darius Adams ◽  
Claire Montgomery ◽  
Douglas Maguire

Abstract The most recent remeasurement of growth (at approximate total stand age 100 years) from the Black Rock Thinning Trial in western Oregon provides useful information for forest owners interested in accelerating restoration of older forest characteristics in Douglas-fir stands of the Pacific Northwest. Thinnings at several intensities at total stand age of roughly 50 years effectively reset stand growth patterns. With quadratic mean diameters in thinned plots up to 40% higher than those of unthinned controls, thinned plot mean annual increments (MAIs) and periodic annual increments continue to rise 55 years after thinning, with the peak in board foot and cubic foot MAI apparently still decades in the future. Assuming repeatable future thinning responses similar to the Black Rock Trial, financial analysis of the opportunity costs of extending rotations to 100 years indicates that some thinning treatments can reduce opportunity costs by up to half at a 6% discount rate. Study Implications Active management through thinning may be a useful tool for public and private landowners interested in rapid development of stands with older forest characteristics to enhance output of some ecosystem services. Heavy thinning regimes, of the type described here, are compatible with growing trees with large diameter stems, large branches, and large crowns. They also reduce fuel accumulation by lowering mortality rates of stems less than 60 years old and slowing the rate of crown recession, branch mortality, and branch litterfall. Midrotation thinning revenues reduce opportunity costs of holding more rapidly growing stems to older ages, which may be a consideration for some owners.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1745
Author(s):  
Rebecca A. Sheridan ◽  
Anthony S. Davis

Nursery-grown tree seedlings are a vital component of successful restoration and reforestation programs, useful when calls for increased planting for industrial forest management are made, and a tool for climate change mitigation. One of the most extensively planted and studied trees in Western North America is Douglas-fir. Building on that body of work, this review was conducted to identify if the root-to-shoot ratio (root:shoot, R:S), a commonly referred-to metric in reforestation planning, yields meaningful guidance for producing seedlings that are better able to establish across a variety of field conditions. The results indicated that there is wide variability in R:S of nursery-grown seedlings. The relationship between R:S and subsequent root growth and seedling survival varies depending on Douglas-fir variety, seedling stocktypes, and site conditions. The biological and physiological basis for using R:S remains, and likely could be used to enhance seedling quality; however, there is an ongoing need for planning and collaboration between researchers and practitioners to identify how to best deploy this evaluation tool.


Sign in / Sign up

Export Citation Format

Share Document